collect_and_normalize | R Documentation |
Collect data from a parquet, feather or sqlite query and normalize cansim table output
collect_and_normalize(
connection,
replacement_value = "val_norm",
normalize_percent = TRUE,
default_month = "07",
default_day = "01",
factors = TRUE,
strip_classification_code = FALSE,
disconnect = FALSE
)
connection |
A connection to a local arrow connection as returned by |
replacement_value |
(Optional) the name of the column the manipulated value should be returned in. Defaults to adding the 'val_norm' value field. |
normalize_percent |
(Optional) When |
default_month |
The default month that should be used when creating Date objects for annual data (default set to "07") |
default_day |
The default day of the month that should be used when creating Date objects for monthly data (default set to "01") |
factors |
(Optional) Logical value indicating if dimensions should be converted to factors. (Default set to |
strip_classification_code |
(Optional) Logical value indicating if classification code should be stripped from names. (Default set to |
disconnect |
(Optional) Only used when format is sqlite. Logical value to indicate if the SQLite database connection should be disconnected. (Default is |
A tibble with the collected and normalized data
## Not run:
library(dplyr)
con <- get_cansim_connection("34-10-0013")
data <- con %>%
filter(GEO=="Ontario") %>%
collect_and_normalize()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.