Nothing
#' Generate Triangular 3D Datasets with Noise
#'
#' This function generates triangular 3D datasets with added noise dimensions.
#'
#' @param n The total number of samples to generate.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A matrix containing the triangular 3D datasets with added noise.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' triangular_3d_data <- tri_3d(
#' n = 100, num_noise = 2,
#' min_n = -0.05, max_n = 0.05
#' )
tri_3d <- function(n, num_noise, min_n, max_n) {
if (n <= 0) {
stop("Number of points should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n)) {
stop("Missing n.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
trace_point <- stats::runif(3)
corner_points <- matrix(c(c(0, 1, 0.5, 0.5), c(0, 0, 1, 0.5), c(0, 0, 0, 1)),
ncol = 3
)
df <- matrix(c(rep(0, n), rep(0, n), rep(0, n)), ncol = 3)
for (i in 1:n) {
trace_point <- (corner_points[sample(4, 1), ] + trace_point) / 2
df[i, ] <- trace_point
}
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df <- cbind(df, noise_mat)
df
} else {
df
}
}
#' Generate Triangular Plane with Background Noise
#'
#' This function generates a triangular plane dataset with background noise dimensions.
#'
#' @param n The total number of samples to generate.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A matrix containing the triangular plane dataset with background noise.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' triangular_plane_data <- tri_plane_bkg(
#' n = 216,
#' num_noise = 2, min_n = -0.05, max_n = 0.05
#' )
tri_plane_bkg <- function(n, num_noise, min_n, max_n) {
if (n <= 0) {
stop("Number of points should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n)) {
stop("Missing n.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
# To check that the assigned n is divided by three
if ((n %% 3) != 0) {
warning("The sample size should be a product of three.")
cluster_size <- floor(n / 3)
} else {
cluster_size <- n / 3
}
trace_point <- stats::runif(2)
corner_points <- matrix(c(c(0, 1, 0.5), c(0, 0, 1)), ncol = 2)
df1 <- matrix(c(rep(0, n), rep(0, n)), ncol = 2)
for (i in 1:cluster_size) {
trace_point <- (corner_points[sample(3, 1), ] + trace_point) / 2
df1[i, ] <- trace_point
}
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df1)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df1 <- cbind(df1, noise_mat)
}
df2 <- gen_bkg_noise(
n = cluster_size, num_dims = NCOL(df1), mean = 0.025,
sd = 0.5
)
df <- rbind(df1, df2, -df1)
df
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.