Nothing
#' ARD Dichotomous Survey Statistics
#'
#' Compute Analysis Results Data (ARD) for dichotomous summary statistics.
#'
#' @inheritParams ard_categorical.survey.design
#' @param value (named `list`)\cr
#' named list of dichotomous values to tabulate.
#' Default is `cards::maximum_variable_value(data$variables)`,
#' which returns the largest/last value after a sort.
#'
#' @return an ARD data frame of class 'card'
#' @export
#'
#' @examplesIf cardx:::is_pkg_installed("survey", reference_pkg = "cardx")
#' survey::svydesign(ids = ~1, data = mtcars, weights = ~1) |>
#' ard_dichotomous(by = vs, variables = c(cyl, am), value = list(cyl = 4))
ard_dichotomous.survey.design <- function(data,
variables,
by = NULL,
value = cards::maximum_variable_value(data$variables[variables]),
statistic = everything() ~ c("n", "N", "p", "p.std.error", "deff", "n_unweighted", "N_unweighted", "p_unweighted"),
denominator = c("column", "row", "cell"),
fmt_fn = NULL,
stat_label = everything() ~ list(
p = "%",
p.std.error = "SE(%)",
deff = "Design Effect",
"n_unweighted" = "Unweighted n",
"N_unweighted" = "Unweighted N",
"p_unweighted" = "Unweighted %"
),
...) {
set_cli_abort_call()
check_dots_empty()
check_pkg_installed(pkg = "survey", reference_pkg = "cardx")
# check inputs ---------------------------------------------------------------
check_not_missing(variables)
# process inputs -------------------------------------------------------------
cards::process_selectors(data$variables, variables = {{ variables }})
cards::process_formula_selectors(data$variables[variables], value = value)
cards::fill_formula_selectors(
data$variables[variables],
value = formals(asNamespace("cardx")[["ard_dichotomous.survey.design"]])[["value"]] |> eval()
)
.check_dichotomous_value(data$variables, value)
# return empty ARD if no variables selected ----------------------------------
if (is_empty(variables)) {
return(dplyr::tibble() |> cards::as_card())
}
# calculate summary statistics -----------------------------------------------
ard_categorical(
data = data,
variables = all_of(variables),
by = {{ by }},
statistic = statistic,
denominator = denominator,
fmt_fn = fmt_fn,
stat_label = stat_label
) |>
dplyr::filter(
pmap(
list(.data$variable, .data$variable_level),
function(variable, variable_level) {
variable_level %in% .env$value[[variable]]
}
) |>
unlist()
) |>
dplyr::mutate(context = "dichotomous")
}
#' Perform Value Checks
#'
#' Check the validity of the values passed in `ard_dichotomous(value)`.
#'
#' @param data (`data.frame`)\cr
#' a data frame
#' @param value (named `list`)\cr
#' a named list
#'
#' @return returns invisible if check is successful, throws an error message if not.
#' @keywords internal
#'
#' @examples
#' cardx:::.check_dichotomous_value(mtcars, list(cyl = 4))
.check_dichotomous_value <- function(data, value) {
imap(
value,
function(value, column) {
accepted_values <- .unique_and_sorted(data[[column]])
if (length(value) != 1L || !value %in% accepted_values) {
message <- "Error in argument {.arg value} for variable {.val {column}}."
message <-
case_switch(
length(value) != 1L ~ c(message, "i" = "The value must be one of {.val {accepted_values}}."),
.default = c(message, "i" = "A value of {.val {value}} was passed, but must be one of {.val {accepted_values}}.")
)
if (length(value) == 1L) {
message <-
case_switch(
inherits(data[[column]], "factor") ~
c(message, i = "To summarize this value, use {.fun forcats::fct_expand} to add {.val {value}} as a level."),
.default = c(message, i = "To summarize this value, make the column a factor and include {.val {value}} as a level.")
)
}
cli::cli_abort(
message = message,
call = get_cli_abort_call()
)
}
}
) |>
invisible()
}
#' ARD-flavor of unique()
#'
#' Essentially a wrapper for `unique(x) |> sort()` with `NA` levels removed.
#' For factors, all levels are returned even if they are unobserved.
#' Similarly, logical vectors always return `c(TRUE, FALSE)`, even if
#' both levels are not observed.
#'
#' @param x (`any`)\cr
#' a vector
#'
#' @return a vector
#' @keywords internal
#'
#' @examples
#' cards:::.unique_and_sorted(factor(letters[c(5, 5:1)], levels = letters))
#'
#' cards:::.unique_and_sorted(c(FALSE, TRUE, TRUE, FALSE))
#'
#' cards:::.unique_and_sorted(c(5, 5:1))
.unique_and_sorted <- function(x, useNA = c("no", "always")) {
# styler: off
useNA <- match.arg(useNA)
# if a factor return a factor that includes the same levels (including unobserved levels)
if (inherits(x, "factor")) {
return(
factor(
if (useNA == "no") levels(x)
else c(levels(x), NA_character_),
levels = levels(x)
)
)
}
if (inherits(x, "logical")) {
if (useNA == "no") return(c(TRUE, FALSE))
else return(c(TRUE, FALSE, NA))
}
# otherwise, return a simple unique and sort of the vector
if (useNA == "no") return(unique(x) |> sort())
else return(unique(x) |> sort() |> c(NA))
# styler: on
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.