Nothing
#' ARD t-test
#'
#' @description
#' Analysis results data for paired and non-paired t-tests.
#'
#' @param data (`data.frame`)\cr
#' a data frame. See below for details.
#' @param by ([`tidy-select`][dplyr::dplyr_tidy_select])\cr
#' optional column name to compare by.
#' @param variables ([`tidy-select`][dplyr::dplyr_tidy_select])\cr
#' column names to be compared. Independent t-tests will be computed for
#' each variable.
#' @param id ([`tidy-select`][dplyr::dplyr_tidy_select])\cr
#' column name of the subject or participant ID
#' @param conf.level (scalar `numeric`)\cr
#' confidence level for confidence interval. Default is `0.95`.
#' @param ... arguments passed to `t.test()`
#'
#' @return ARD data frame
#' @name ard_stats_t_test
#'
#' @details
#' For the `ard_stats_t_test()` function, the data is expected to be one row per subject.
#' The data is passed as `t.test(data[[variable]] ~ data[[by]], paired = FALSE, ...)`.
#'
#' For the `ard_stats_paired_t_test()` function, the data is expected to be one row
#' per subject per by level. Before the t-test is calculated, the data are
#' reshaped to a wide format to be one row per subject.
#' The data are then passed as
#' `t.test(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)`.
#'
#' @examplesIf do.call(asNamespace("cardx")$is_pkg_installed, list(pkg = "broom", reference_pkg = "cardx"))
#' cards::ADSL |>
#' dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
#' ard_stats_t_test(by = ARM, variables = c(AGE, BMIBL))
#'
#' # constructing a paired data set,
#' # where patients receive both treatments
#' cards::ADSL[c("ARM", "AGE")] |>
#' dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
#' dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
#' dplyr::arrange(USUBJID, ARM) |>
#' ard_stats_paired_t_test(by = ARM, variables = AGE, id = USUBJID)
NULL
#' @rdname ard_stats_t_test
#' @export
ard_stats_t_test <- function(data, variables, by = NULL, conf.level = 0.95, ...) {
set_cli_abort_call()
# check installed packages ---------------------------------------------------
check_pkg_installed("broom", reference_pkg = "cardx")
# check/process inputs -------------------------------------------------------
check_not_missing(data)
check_not_missing(variables)
check_data_frame(data)
data <- dplyr::ungroup(data)
cards::process_selectors(data, by = {{ by }}, variables = {{ variables }})
check_scalar(by, allow_empty = TRUE)
check_range(conf.level, range = c(0, 1))
# return empty ARD if no variables selected ----------------------------------
if (is_empty(variables)) {
return(dplyr::tibble() |> cards::as_card())
}
# build ARD ------------------------------------------------------------------
lapply(
variables,
function(variable) {
.format_ttest_results(
by = by,
variable = variable,
lst_tidy =
# styler: off
cards::eval_capture_conditions(
if (!is_empty(by)) stats::t.test(data[[variable]] ~ data[[by]], conf.level = conf.level, ...) |> broom::tidy()
else stats::t.test(data[[variable]], ...) |> broom::tidy()
),
# styler: on
paired = FALSE,
...
)
}
) |>
dplyr::bind_rows()
}
#' @rdname ard_stats_t_test
#' @export
ard_stats_paired_t_test <- function(data, by, variables, id, conf.level = 0.95, ...) {
set_cli_abort_call()
# check installed packages ---------------------------------------------------
check_pkg_installed("broom", reference_pkg = "cardx")
# check/process inputs -------------------------------------------------------
check_not_missing(data)
check_not_missing(variables)
check_not_missing(by)
check_not_missing(id)
check_data_frame(data)
data <- dplyr::ungroup(data)
cards::process_selectors(data, by = {{ by }}, variables = {{ variables }}, id = {{ id }})
check_scalar(by)
check_scalar(id)
# return empty ARD if no variables selected ----------------------------------
if (is_empty(variables)) {
return(dplyr::tibble() |> cards::as_card())
}
# build ARD ------------------------------------------------------------------
lapply(
variables,
function(variable) {
.format_ttest_results(
by = by,
variable = variable,
lst_tidy =
cards::eval_capture_conditions({
# adding this reshape inside the eval, so if there is an error it's captured in the ARD object
data_wide <- .paired_data_pivot_wider(data, by = by, variable = variable, id = id)
# perform paired t-test
stats::t.test(x = data_wide[["by1"]], y = data_wide[["by2"]], paired = TRUE, conf.level = conf.level, ...) |>
broom::tidy()
}),
paired = TRUE,
...
)
}
) |>
dplyr::bind_rows()
}
#' Convert t-test to ARD
#'
#' @inheritParams cards::tidy_as_ard
#' @inheritParams stats::t.test
#' @param by (`string`)\cr by column name
#' @param variable (`string`)\cr variable column name
#' @param ... passed to `t.test(...)`
#'
#' @return ARD data frame
#' @keywords internal
#' @examplesIf do.call(asNamespace("cardx")$is_pkg_installed, list(pkg = "broom", reference_pkg = "cardx"))
#' cardx:::.format_ttest_results(
#' by = "ARM",
#' variable = "AGE",
#' paired = FALSE,
#' lst_tidy =
#' cards::eval_capture_conditions(
#' stats::t.test(ADSL[["AGE"]] ~ ADSL[["ARM"]], paired = FALSE) |>
#' broom::tidy()
#' )
#' )
.format_ttest_results <- function(by = NULL, variable, lst_tidy, paired, ...) {
# build ARD ------------------------------------------------------------------
ret <-
cards::tidy_as_ard(
lst_tidy = lst_tidy,
tidy_result_names =
c(
"estimate", "statistic",
"p.value", "parameter", "conf.low", "conf.high",
"method", "alternative"
) |>
# add estimate1 and estimate2 if there is a by variable
append(values = switch(!is_empty(by), c("estimate1", "estimate2")), after = 1L), # styler: off
fun_args_to_record = c("mu", "paired", "var.equal", "conf.level"),
formals = formals(asNamespace("stats")[["t.test.default"]]),
passed_args = c(list(paired = paired), dots_list(...)),
lst_ard_columns = list(variable = variable, context = "stats_t_test")
)
if (!is_empty(by)) {
ret <- ret |>
dplyr::mutate(group1 = by)
}
# add the stat label ---------------------------------------------------------
ret |>
dplyr::left_join(
.df_ttest_stat_labels(by = by),
by = "stat_name"
) |>
dplyr::mutate(stat_label = dplyr::coalesce(.data$stat_label, .data$stat_name)) |>
cards::as_card() |>
cards::tidy_ard_column_order()
}
#' Convert long paired data to wide
#'
#'
#' @param data (`data.frame`)\cr a data frame that is one line per subject per group
#' @param by (`string`)\cr by column name
#' @param variable (`string`)\cr variable column name
#' @param id (`string`)\cr subject id column name
#'
#' @return a wide data frame
#' @keywords internal
#' @examples
#' cards::ADSL[c("ARM", "AGE")] |>
#' dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
#' dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
#' dplyr::arrange(USUBJID, ARM) |>
#' cardx:::.paired_data_pivot_wider(by = "ARM", variable = "AGE", id = "USUBJID")
.paired_data_pivot_wider <- function(data, by, variable, id) {
# check the number of levels before pivoting data to wider format
if (dplyr::n_distinct(data[[by]], na.rm = TRUE) != 2L) {
cli::cli_abort("The {.arg by} argument must have two and only two levels.",
call = get_cli_abort_call()
)
}
data |>
# arrange data so the first group always appears first
dplyr::arrange(.data[[by]]) |>
tidyr::pivot_wider(
id_cols = all_of(id),
names_from = all_of(by),
values_from = all_of(variable)
) |>
stats::setNames(c(id, "by1", "by2"))
}
.df_ttest_stat_labels <- function(by = NULL) {
dplyr::tribble(
~stat_name, ~stat_label,
"estimate1", "Group 1 Mean",
"estimate2", "Group 2 Mean",
"estimate", ifelse(is_empty(by), "Mean", "Mean Difference"),
"p.value", "p-value",
"statistic", "t Statistic",
"parameter", "Degrees of Freedom",
"conf.low", "CI Lower Bound",
"conf.high", "CI Upper Bound",
"mu", "H0 Mean",
"paired", "Paired t-test",
"var.equal", "Equal Variances",
"conf.level", "CI Confidence Level",
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.