Nothing
skip_if_not(is_pkg_installed("broom"))
test_that("ard_categorical_ci.data.frame(method = 'wald')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "wald"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_wald(mtcars[["vs"]]) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'waldcc')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "waldcc"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_wald(mtcars[["vs"]], correct = TRUE) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'clopper-pearson')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "clopper-pearson"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_clopper_pearson(mtcars[["vs"]]) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'wilson')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "wilson"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_wilson(mtcars[["vs"]]) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'wilsoncc')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "wilsoncc"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_wilson(mtcars[["vs"]], correct = TRUE) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'strat_wilson')", {
mtcars$gear <- as.factor(mtcars$gear)
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
strata = "gear",
method = "strat_wilson"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_strat_wilson(mtcars[["vs"]], strata = as.factor(mtcars[["gear"]])) |>
unlist() |> unname()
)
# check `denominator = "row"` result
expect_equal(
ard_categorical_ci(
mtcars |> dplyr::mutate(cyl = factor(cyl)),
variables = vs,
by = am,
strata = "cyl",
method = "strat_wilson",
denominator = "row"
) |>
dplyr::filter(group1_level %in% 0) |>
cards::get_ard_statistics(),
proportion_ci_strat_wilson(
x = (mtcars$am == 0)[mtcars$vs == 1],
strata = as.factor(mtcars[["cyl"]])[mtcars$vs == 1]
)
)
# check `denominator = "cell"` result
expect_equal(
ard_categorical_ci(
mtcars |> dplyr::mutate(cyl = factor(cyl)),
variables = vs,
by = am,
strata = "cyl",
method = "strat_wilson",
denominator = "cell"
) |>
dplyr::filter(group1_level %in% 0, variable_level %in% 1) |>
cards::get_ard_statistics(),
proportion_ci_strat_wilson(
x = mtcars$am == 0 & mtcars$vs == 1,
strata = as.factor(mtcars[["cyl"]])
)
)
})
test_that("ard_categorical_ci.data.frame(method = 'strat_wilsoncc')", {
mtcars$gear <- as.factor(mtcars$gear)
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
strata = "gear",
method = "strat_wilsoncc"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_strat_wilson(mtcars[["vs"]], strata = as.factor(mtcars[["gear"]]), correct = TRUE) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'jeffreys')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "jeffreys"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_jeffreys(mtcars[["vs"]]) |>
unlist() |> unname()
)
})
test_that("ard_categorical_ci.data.frame(method = 'agresti-coull')", {
expect_equal(
ard_categorical_ci(
mtcars,
variables = vs,
method = "agresti-coull"
) |>
dplyr::select(stat) |> unlist() |> unname(),
proportion_ci_agresti_coull(mtcars[["vs"]]) |>
unlist() |> unname()
)
})
test_that("ard_continuous_ci.data.frame() follows ard structure", {
expect_silent(
ard_categorical_ci(
mtcars,
variables = vs,
method = "wald"
) |>
cards::check_ard_structure()
)
})
test_that("ard_continuous_ci.data.frame(denominator='row')", {
# check the structure of the output
expect_silent(
ard <- ard_categorical_ci(
mtcars,
by = am,
variables = vs,
value = NULL,
denominator = "row"
)
)
expect_silent(
cards::check_ard_structure(ard)
)
# check the estimates align with `cards::ard_categorical(denominator='row)`
expect_equal(
ard |>
dplyr::filter(stat_name == "estimate") |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(unlist(group1_level), unlist(variable_level)),
cards::ard_categorical(
mtcars,
by = am,
variables = vs,
denominator = "row",
statistic = ~"p"
) |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(unlist(group1_level), unlist(variable_level))
)
# check the estimates align with `cards::ard_categorical(denominator='row)` for dichotomous variables
expect_equal(
ard_categorical_ci(
mtcars,
by = am,
variables = vs,
denominator = "row"
) |>
dplyr::filter(stat_name == "estimate") |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(unlist(group1_level), unlist(variable_level)),
cards::ard_dichotomous(
mtcars,
by = am,
variables = vs,
denominator = "row",
statistic = ~"p"
) |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(unlist(group1_level), unlist(variable_level))
)
# check the results work with multiple `by` variables
expect_equal(
ard_categorical_ci(
mtcars,
by = c(cyl, gear),
variables = am,
denominator = "row"
) |>
dplyr::filter(group1_level %in% 4, group2_level %in% 3) |>
cards::get_ard_statistics(),
proportion_ci_wald(
x = (mtcars$cyl == 4 & mtcars$gear == 3)[mtcars$am == 1],
correct = TRUE
)
)
# check the results work with no `by` variables
expect_equal(
ard_categorical_ci(
mtcars,
variables = am,
denominator = "row"
) |>
cards::get_ard_statistics(),
proportion_ci_wald(
x = rep_len(TRUE, length.out = sum(mtcars$am == 1)),
correct = TRUE
)
)
})
test_that("ard_continuous_ci.data.frame(denominator='cell')", {
# check the structure of the output
expect_silent(
ard <- ard_categorical_ci(
mtcars,
by = am,
variables = vs,
value = NULL,
denominator = "cell"
)
)
expect_silent(
cards::check_ard_structure(ard)
)
# check the estimates align with `cards::ard_categorical(denominator='row)`
expect_equal(
ard |>
dplyr::filter(stat_name == "estimate") |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(group1, variable, unlist(group1_level), unlist(variable_level)),
cards::ard_categorical(
mtcars,
by = am,
variables = vs,
denominator = "cell",
statistic = ~"p"
) |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(group1, variable, unlist(group1_level), unlist(variable_level))
)
# check the estimates align with `cards::ard_categorical(denominator='row)` for dichotomous variables
expect_equal(
ard_categorical_ci(
mtcars,
by = am,
variables = vs,
denominator = "cell"
) |>
dplyr::filter(stat_name == "estimate") |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(unlist(group1_level), unlist(variable_level)),
cards::ard_dichotomous(
mtcars,
by = am,
variables = vs,
denominator = "cell",
statistic = ~"p"
) |>
dplyr::select(cards::all_ard_groups(), cards::all_ard_variables(), "stat") |>
dplyr::arrange(unlist(group1_level), unlist(variable_level))
)
# check the results work with multiple `by` variables
expect_equal(
ard_categorical_ci(
mtcars,
by = c(cyl, gear),
variables = am,
denominator = "cell"
) |>
dplyr::filter(group1_level %in% 4, group2_level %in% 3) |>
cards::get_ard_statistics(),
proportion_ci_wald(
x = (mtcars$cyl == 4 & mtcars$gear == 3 & mtcars$am == 1),
correct = TRUE
)
)
# check the results work with no `by` variables
expect_equal(
ard_categorical_ci(
mtcars,
variables = am,
denominator = "cell"
) |>
cards::get_ard_statistics(),
proportion_ci_wald(
x = mtcars$am == 1,
correct = TRUE
)
)
})
test_that("ard_continuous_ci.data.frame(denominator='column') with all NA column", {
expect_silent(
ard <-
mtcars |>
dplyr::mutate(vs = ifelse(am == 0, NA, vs)) |>
ard_categorical_ci(
variables = vs,
by = am,
denominator = "column",
method = "wilson"
)
)
expect_equal(
ard |>
dplyr::filter(group1_level %in% 0) |>
dplyr::pull(stat_name),
c("N", "n", "estimate", "conf.low", "conf.high", "conf.level", "method")
)
})
test_that("ard_continuous_ci.data.frame(denominator='row') with all NA column", {
expect_silent(
ard <-
mtcars |>
dplyr::mutate(vs = ifelse(am == 0, NA, vs)) |>
ard_categorical_ci(
variables = vs,
by = am,
denominator = "row",
method = "wilson"
)
)
expect_equal(
ard |>
dplyr::filter(group1_level %in% 0) |>
dplyr::pull(stat_name),
c("N", "n", "conf.level", "estimate", "statistic", "p.value", "parameter", "conf.low", "conf.high", "method", "alternative")
)
})
test_that("ard_continuous_ci.data.frame(denominator='cell') with all NA column", {
expect_silent(
ard <-
mtcars |>
dplyr::mutate(vs = ifelse(am == 0, NA, vs)) |>
ard_categorical_ci(
variables = vs,
by = am,
denominator = "cell",
method = "wilson"
)
)
expect_equal(
ard |>
dplyr::filter(group1_level %in% 0) |>
dplyr::pull(stat_name),
c("N", "n", "conf.level", "estimate", "statistic", "p.value", "parameter", "conf.low", "conf.high", "method", "alternative")
)
})
test_that("ard_continuous_ci.data.frame() NA handling", {
df <- mtcars[c("am", "cyl", "gear")]
df$am[1:5] <- NA
df$cyl[6:10] <- NA
expect_equal(
ard_categorical_ci(df, by = am, variables = cyl, denominator = "column", method = "wald") |>
dplyr::filter(group1_level %in% 0, variable_level %in% 4) |>
cards::get_ard_statistics(),
proportion_ci_wald((df$cyl == 4)[df$am == 0])
)
expect_equal(
ard_categorical_ci(df, by = am, variables = cyl, denominator = "row", method = "wald") |>
dplyr::filter(group1_level %in% 0, variable_level %in% 4) |>
cards::get_ard_statistics(),
proportion_ci_wald((df$am == 0)[df$cyl == 4])
)
expect_equal(
ard_categorical_ci(df, by = am, variables = cyl, denominator = "cell", method = "wald") |>
dplyr::filter(group1_level %in% 0, variable_level %in% 4) |>
cards::get_ard_statistics(),
proportion_ci_wald((df$am == 0) + (df$cyl == 4) > 1)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.