Description Usage Arguments Examples
Claim data fitting analysis at line/type/status level
1 2 3 4 5 6 7 8 9 10 11 12 13 | claimFitting(object, claimData, ...)
## S4 method for signature 'Simulation,data.frame'
claimFitting(object, claimData,
startDate = as.Date("2012-01-01"),
evaluationDate = as.Date("2016-12-31"), lineList = object@lines,
typeList = object@types, discreteDist = c("Poisson",
"NegativeBinomial", "Geometric"), continuousDist = c("Normal",
"Lognormal", "Pareto", "Weibull", "Gamma", "Uniform", "Exponential"),
copulaList = c("normal"), fReportLag = TRUE, fSettlementLag = TRUE,
fFrequency = TRUE, fSeverity = TRUE, fSSRCorrelation = TRUE,
fFreqCorrelation = TRUE, copulaTest = TRUE, iTotalLoss = TRUE,
fDeductible = TRUE, fLimit = TRUE, check = TRUE)
|
object |
Simulation object |
claimData |
claim data including existing claims for RBNER and claim reopenness analysis |
... |
Additional parameters that may or may not be used. |
startDate |
Date after which claims are analyzed; |
evaluationDate |
Date of evaluation for existing claims and IBNR; |
lineList |
List of business lines to be included in claim fitting; |
typeList |
List of claim types to be included in claim fitting; |
discreteDist |
List of discrete distributions to try fitting (report lag, settlemet lag, frequency); |
continuousDist |
List of continuous distribution to try fitting (severity); |
copulaList |
List of copula to try fitting; |
fReportLag |
Boolean variable to indicate whether report lag needs to be fitted; |
fSettlementLag |
Boolean variable to indicate whether settlement lag needs to be fitted; |
fFrequency |
Boolean variable to indicate whether monthly frequency needs to be fitted; |
fSeverity |
Boolean variable to indicate whether severity needs to be fitted; |
fSSRCorrelation |
Boolean variable to indicate whether copula among severity, report lag and settlement lag needs to be fitted; |
fFreqCorrelation |
Boolean variable to indicate whether copula among frequencies of business lines needs to be fitted. |
copulaTest |
Whether to test copula. The testing could take a very long time; |
iTotalLoss |
Boolean variable to indicate whether total loss before deductible and limit is available for severity fitting; |
fDeductible |
Boolean variable to indicate whether deductible empirical distribution needs to be fitted; |
fLimit |
Boolean variable to indicate whether limit empirical distribution needs to be fitted; |
check |
Boolean variable to indicate whether graph of each tried distribution fitting needs to be generated and saved. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | library(cascsim)
data(claimdata)
lines<-c("Auto")
types<-c("N")
#exposure index
index1 <- new("Index",monthlyIndex=c(rep(1,11),cumprod(c(1,rep(1.5^(1/12),11))),
cumprod(c(1.5,rep((1.3/1.5)^(1/12),11))),
cumprod(c(1.3,rep((1.35/1.3)^(1/12),11))),cumprod(c(1.35,rep((1.4/1.35)^(1/12),11))),rep(1.4,301)))
#severity index
index2 <- new("Index",monthlyIndex=c(cumprod(c(1,rep(1.03^(1/12),59))),rep(1.03^(5),300)))
objan <- new("ClaimType", line="Auto",claimType="N",exposureIndex=index1,severityIndex=index2)
objlist <- list(objan)
simobj <- new("Simulation",lines=lines,types=types,claimobjs=objlist,iFit=TRUE,
iCopula=FALSE, iReport=TRUE, workingFolder=tempdir())
simobj <- claimFitting(simobj,claimdata,fSSRCorrelation = FALSE, fSettlementLag = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.