R/GAfunc.R

Defines functions NewpopulationIsland mutation checkConv

Documented in mutation

#-------------------------- Check Convergence
checkConv <- function(a, maxconv, tol) {
  # This function is used to check convergence criterion for overall GA
  # some inputs ++++++++++++++++++
  #   a= the best fitness values for maxconv consecutive migrations
  #   maxconv= if maxconv consecutive migrations, the overall best does not change, then stop
  #   tol= tolerance level for iterations
  # outputs ++++++++++++++++++
  #   decision = 1 means stop and 0 means continue
  i <- 1
  repeat{
    diff <- abs(a[i + 1] - a[i])
    if (diff < tol) {
      i <- i + 1
      if (i >= maxconv) {
        decision <- 1
        break
      }
    } else {
      decision <- 0
      break
    }
  }
  return(decision)
}

#' The default mutation operator in genetic algorithm
#'
#' In a certain probability, the \code{mutation} genetic operator can be applied
#' to generate a new \code{child}. By default, the new child selection can be
#' down by the similar individual selection method in population initialization,
#' \code{\link{selectTau}}.
#'
#' @param child The child chromosome resulting from the \code{crossover} genetic
#' operator.
#' @param prange Default is \code{NULL} for only changepoint detection. If
#' \code{prange} is specified as a list object, which contains the range of
#' each model order parameters for order selection (integers). The number of
#' order parameters must be equal to the length of \code{prange}.
#' @param minDist The required minimum distance between two adjacent changepoints.
#' @param pchangepoint The probability of changepoints for every time series.
#' @param lmax The user specified maximum number of changepoints, by default,
#' as \code{N/2 - 1}.
#' @param mmax The user specified maximum length of individual chromosome,
#' by default, as \code{2+N/2 + 1}.
#' @param N The sample size of the time series.
#' @details
#' A function can apply mutation to the produced child with the specified
#' probability \code{pmutation} in \code{cptga} and
#' \code{cptgaisl}. If order selection is not requested
#' (\code{option = "cp"} in \code{cptga} and \code{cptgaisl}), the default
#' \code{\link{mutation}} operator function uses \code{selectTau} to select
#' a completely new individual with a new chromosome as the mutated child.
#' For details, see \code{\link{selectTau}}. If order selection is needed
#' (\code{option = "both"} in \code{cptga} and \code{cptgaisl}), we first
#' decide whether to keep the produced child's model order with a probability
#' of 0.5. If the child's model order is retained, the \code{selectTau}
#' function is used to select a completely new individual with a new chromosome
#' as the mutated child. If a new model order is selected from the candidate
#' model order set, there is a 0.5 probability to either select a completely new
#' individual with new changepoint locations or retain the original child's
#' changepoint locations for the mutated child. Note that the current model
#' orders in the child's chromosome are excluded from the set to avoid redundant
#' objective function evaluation. Finally, the function returns a vector
#' containing the modified chromosomes for mutated \code{child}.
#' @return The resulting child chromosome representation.
#' @import Rcpp
#' @import stats
#' @import graphics
#' @useDynLib changepointGA
#' @export
mutation <- function(child, prange = NULL, minDist, pchangepoint, lmax, mmax, N) {
  plen <- length(prange)

  if (plen > 0) {
    childMut <- matrix(0, nrow = lmax, 1)
    a1 <- runif(1)
    if (a1 > 0.5) {
      # 1. order from child
      childMut[2:(plen + 1), ] <- child[2:(plen + 1)]
      # 1.1 cpt from new
      tmpchildMut <- selectTau(
        N = N, prange = NULL, minDist = minDist, pchangepoint = pchangepoint,
        mmax = mmax, lmax = lmax
      )
      childMut[1, ] <- tmpchildMut[1]
      childMut[(plen + 2):(plen + tmpchildMut[1] + 2), ] <- tmpchildMut[2:(tmpchildMut[1] + 2)]
    } else {
      # 2. order from new
      new.prange <- rep(NA, plen)
      for (ii in 1:plen) {
        tmp.prange <- setdiff(prange[[ii]][1]:prange[[ii]][2], child[2 + ii - 1])
        new.prange[ii] <- sample(tmp.prange, 1)
      }
      childMut[2:(plen + 1), ] <- new.prange
      a2 <- runif(1)
      if (a2 > 0.5) {
        # 2.1 cpt from new
        tmpchildMut <- selectTau(
          N = N, prange = NULL, minDist = minDist, pchangepoint = pchangepoint,
          mmax = mmax, lmax = lmax
        )
        childMut[1, ] <- tmpchildMut[1]
        childMut[(plen + 2):(plen + tmpchildMut[1] + 2), ] <- tmpchildMut[2:(tmpchildMut[1] + 2)]
      } else {
        # 2.2 cpt from child
        childMut[1, ] <- child[1]
        childMut[(plen + 2):(plen + child[1] + 2), ] <- child[(plen + 2):(plen + child[1] + 2)]
      }
    }
  } else {
    tmpchildMut <- selectTau(
      N = N, prange = NULL, minDist = minDist, pchangepoint = pchangepoint,
      mmax = mmax, lmax = lmax
    )
    childMut <- tmpchildMut
  }

  return(childMut)
}

NewpopulationIsland <- function(ObjFunc, prange, selection, crossover, mutation, pop, fit, minDist, lmax, mmax, pcrossover, pmutation, pchangepoint, maxgen, N, ...) {
  # This function is used to form new population
  # some inputs ++++++++++++++++++
  #   pop= population
  #   fit= fitness evaluated for population
  #   minDist= minimum distances between two adjacent changepoints
  #   lmax= max length of chromosome
  #   mmax= max number of changepoints
  #   pcrossover= prob of crossover
  #   pmutation= prob of mutation
  #   pchangepoint= prob of changepoints for every time series
  #   maxgen= for each subpopulation, after maxgen then apply migration
  #   N= sample size
  #   X_hour= categorical time series
  #   XMat= Design matrix including covariate other than changepoint
  #   penalty= selection criterion to choose
  # outputs ++++++++++++++++++
  #   pop= updated population
  #   fit= updated population fitness
  #   bestfit  = currnt minimum of fitness values
  #   bestchrom = chromosome representation of the individual associated with bestfit

  plen <- length(prange)

  count <- 1
  repeat{
    # indicator for c("crossover", "mutation")
    #     flag[1]=1 indicating no cross-over
    #     flag[2]=1 indicating no mutation
    flag <- rep(0, 2)
    ##### step 2: parents selection
    parents <- selection(pop, fit)
    dad <- parents$dad
    mom <- parents$mom

    ##### step 3: crossover
    a1 <- runif(1)
    if (a1 <= pcrossover) {
      child <- crossover(mom, dad, prange, minDist, lmax, N)
    } else {
      child <- dad
      flag[1] <- 1
    }

    ## step 4-2: mutation
    a2 <- runif(1)
    if (a2 <= pmutation) {
      child <- mutation(child, prange, minDist, pchangepoint, lmax, mmax, N)
    } else {
      flag[2] <- 1
    }

    ## step 5: form new generation
    #  steady state method:
    #     replace the least fit in the current pop with child if child is better.
    flagsum <- flag[1] + flag[2]
    if (flagsum < 2) {
      # flagsum < 2 indicating new individual produced and fitness evaluation needed
      fitChild <- do.call(ObjFunc, c(list(child[1:(child[1] + plen + 2)], plen, ...)))
      # fitChild = do.call(ObjFunc, c(list(child[1:(child[1]+plen+2)], plen, XMat, Xt)))
      leastfit <- max(fit) # with largest fitness value

      if (fitChild < leastfit) {
        # indicating child is better than the worst one and replace
        pp <- which.max(fit)
        pop[, pp] <- child
        fit[pp] <- fitChild
      }
      count <- count + 1
    }

    # check: after every maxgen generations, apply migration in GA.Main()
    if (count >= maxgen) {
      break
    }
  }

  return(rbind(fit, pop))
}

Try the changepointGA package in your browser

Any scripts or data that you put into this service are public.

changepointGA documentation built on Nov. 5, 2025, 6:54 p.m.