Generate plot showing predicted values for Repeated Double Cross Validation
1  plotpredmvr(mvrdcvobj, optcomp, y, X, method = "simpls", ...)

mvrdcvobj 
object from repeated doubleCV, see 
optcomp 
optimal number of components 
y 
data from response variable 
X 
data with explanatory variables 
method 
the multivariate regression method to be used, see

... 
additional plot arguments 
After running repeated doubleCV, this plot visualizes the predicted values.
A plot is generated.
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
1 2 3 4 5 6  data(NIR)
X < NIR$xNIR[1:30,] # first 30 observations  for illustration
y < NIR$yGlcEtOH[1:30,1] # only variable Glucose
NIR.Glc < data.frame(X=X, y=y)
res < mvr_dcv(y~.,data=NIR.Glc,ncomp=10,method="simpls",repl=10)
plot3 < plotpredmvr(res,opt=7,y,X,method="simpls")

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.
Please suggest features or report bugs with the GitHub issue tracker.
All documentation is copyright its authors; we didn't write any of that.