plotresprm | R Documentation |
Generate plot showing residuals for Repeated Double Cross Validation for Partial Robust M-regression
plotresprm(prmdcvobj, optcomp, y, X, ...)
prmdcvobj |
object from repeated double-CV of PRM, see |
optcomp |
optimal number of components |
y |
data from response variable |
X |
data with explanatory variables |
... |
additional plot arguments |
After running repeated double-CV for PRM, this plot visualizes the residuals. The result is compared with predicted values obtained via usual CV of PRM.
A plot is generated.
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
prm
data(NIR)
X <- NIR$xNIR[1:30,] # first 30 observations - for illustration
y <- NIR$yGlcEtOH[1:30,1] # only variable Glucose
NIR.Glc <- data.frame(X=X, y=y)
res <- prm_dcv(X,y,a=4,repl=2)
plot4 <- plotresprm(res,opt=res$afinal,y,X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.