Nothing
#' Assessing confounding effects using Generalized Linear regression models
#'
#' Please note: \code{'chest_glm'} is used to assess confounding effects using
#' Generalized Linear Models, such as
#' logistic regression and Poisson regression with \code{'glm'}.
#' It presents \emph{odds ratios} or \emph{rate ratios} for the association
#' between exposure and outcome variables by adding other variables (potential
#' confounders) to the model sequentially. The order of variables to be added is
#' based on the magnitudes of the changes in effect estimates.
#'
#' @export
#' @param crude An object of \emph{formula} for initial model, generally crude model.
#' However, any other variables can also be included here as the initial model.
#' @param xlist A \emph{vector} of characters with all variable names of potential confounders.
#' @param data \emph{Data frame}.
#' @param family Description of the error distribution. Default is "binomial".
#' @param method Method to detect for singularity.
#' @param na_omit Remove all missing values, default: 'na_omit = TRUE'.
#' @param plus Change the \code{+} sign before variable names.
#' @param indicate indicate progress.
#' @param ... Further optional arguments for forestplot.
#' @return A table with effect estimates and their changes at all steps.
#' @seealso \code{'glm'} \pkg{'stats'}
#' @examples
#' chest_glm(
#' crude = "Endpoint ~ Diabetes", xlist = c("Age", "Sex", "Married"),
#' na_omit = TRUE, data = diab_df
#' )
#' @name chest_glm
chest_glm <- function(
crude, xlist, data,
family = "binomial",
method = "glm.fit",
na_omit = TRUE,
indicate = FALSE,
plus = " + ",
...) {
pick <- variables <- est <- se <- Change <- p <- lb <- ub <- n <- c()
n_xlist <- length(xlist)
data <- data.frame(c(data[all.vars(as.formula(crude))], data[xlist]))
if (na_omit) {
data <- na.omit(data)
}
mod_crude <- glm(
as.formula(crude),
family = family,
method = method,
data = data,
...
)
mod0 <- broom::tidy(
mod_crude,
exponentiate = TRUE,
conf.int = TRUE
)
n[1] <- stats::nobs(mod_crude)
est[1] <- mod0$estimate[2]
p[1] <- mod0$p.value[2]
lb[1] <- mod0$conf.low[2]
ub[1] <- mod0$conf.high[2]
variables[1] <- c("Crude")
initial_model <- crude
for (i in 2:(n_xlist + 1)) {
mod <- glm(as.formula(crude),
family = family, method = method,
data = data,
...
)
hr_0 <- broom::tidy(mod, exponentiate = TRUE)$estimate[2]
models <- lapply(xlist, function(x) {
update(mod, as.formula(paste0(". ~ . +", x)))
})
hr_1 <- unlist(lapply(models, function(x) {
broom::tidy(x, exponentiate = TRUE)$estimate[2]
}))
p_1 <- unlist(lapply(models, function(x) {
broom::tidy(x)$p.value[2]
}))
chg <- (hr_1 - hr_0) * 100 / hr_0
lb_1 <- unlist(lapply(models, function(x) {
broom::tidy(x,
exponentiate = TRUE,
conf.int = TRUE
)$conf.low[2]
}))
ub_1 <- unlist(lapply(models, function(x) {
broom::tidy(x,
exponentiate = TRUE,
conf.int = TRUE
)$conf.high[2]
}))
n_1 <- unlist(lapply(models, function(x) {
stats::nobs(x)
}))
pick[i] <- xlist[which.max(abs(chg))]
xlist <- xlist[-which(xlist %in% paste0(pick[i]))]
crude <- paste0(crude, "+", paste0(pick[i]), collapse = " + ")
variables[i] <- paste0(plus, pick[i])
est[i] <- hr_1[which.max(abs(chg))]
lb[i] <- lb_1[which.max(abs(chg))]
ub[i] <- ub_1[which.max(abs(chg))]
Change[i] <- chg[which.max(abs(chg))]
p[i] <- p_1[which.max(abs(chg))]
n[i] <- n_1[which.max(abs(chg))]
if (indicate) {
cat("\r", i, "out of", n_xlist + 1)
}
}
cat(" ", "\n")
out <- data.frame(variables, est, lb, ub, Change)
tab_out <- data.frame(out, p, n)
row.names(tab_out) <- NULL
fun <- "chest_glm"
family <- mod_crude$family$family
lst_ret <- list(tab_out, fun, family)
names(lst_ret) <- c("data", "fun", "family")
lst_ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.