inst/doc/v01_start.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(warning = FALSE, message = FALSE)

## -----------------------------------------------------------------------------
library(chopin)
library(terra)
library(sf)
library(collapse)
library(dplyr)
library(future)
library(future.mirai)
library(future.apply)

## -----------------------------------------------------------------------------
temp_dir <- tempdir(check = TRUE)

url_nccnty <-
  paste0(
    "https://raw.githubusercontent.com/",
    "ropensci/chopin/refs/heads/main/",
    "tests/testdata/nc_hierarchy.gpkg"
  )
url_ncelev <-
  paste0(
    "https://raw.githubusercontent.com/",
    "ropensci/chopin/refs/heads/main/",
    "tests/testdata/nc_srtm15_otm.tif"
  )

nccnty_path <- file.path(temp_dir, "nc_hierarchy.gpkg")
ncelev_path <- file.path(temp_dir, "nc_srtm15_otm.tif")

# download data
download.file(url_nccnty, nccnty_path, mode = "wb", quiet = TRUE)
download.file(url_ncelev, ncelev_path, mode = "wb", quiet = TRUE)

nccnty <- terra::vect(nccnty_path, layer = "county")
ncelev <- terra::rast(ncelev_path)


## -----------------------------------------------------------------------------
ncsamp <-
  terra::spatSample(
    nccnty,
    1e4L
  )
ncsamp$pid <- seq_len(nrow(ncsamp))

## -----------------------------------------------------------------------------
ncgrid <- par_pad_grid(ncsamp, mode = "grid", nx = 4L, ny = 2L, padding = 10000)

plot(ncgrid$original)

## -----------------------------------------------------------------------------
future::plan(future.mirai::mirai_multisession, workers = 2L)

## -----------------------------------------------------------------------------

pg <-
  par_grid(
    grids = ncgrid,
    pad_y = FALSE,
    .debug = TRUE,
    fun_dist = extract_at,
    x = ncelev_path,
    y = sf::st_as_sf(ncsamp),
    id = "pid",
    radius = 1e4,
    func = "mean"
  )


## ----eval=FALSE---------------------------------------------------------------
# # also possible in mirai with par_*_mirai functions
# # mirai daemons should be created first
# mirai::daemons(n = 2L)
# pg <-
#   par_grid_mirai(
#     grids = ncgrid,
#     pad_y = FALSE,
#     .debug = TRUE,
#     fun_dist = extract_at,
#     x = ncelev_path,
#     y = sf::st_as_sf(ncsamp),
#     id = "pid",
#     radius = 1e4,
#     func = "mean"
#   )
# mirai::daemons(n = 0L)

## -----------------------------------------------------------------------------
nccnty <- sf::st_read(nccnty_path, layer = "county")
nctrct <- sf::st_read(nccnty_path, layer = "tracts")


## -----------------------------------------------------------------------------
px <-
  par_hierarchy(
    # from here the par_hierarchy-specific arguments
    regions = nctrct,
    regions_id = "GEOID",
    length_left = 5,
    pad = 10000,
    pad_y = FALSE,
    .debug = TRUE,
    # from here are the dispatched function definition
    # for parallel workers
    fun_dist = extract_at,
    # below should follow the arguments of the dispatched function
    x = ncelev,
    y = sf::st_as_sf(ncsamp),
    id = "pid",
    radius = 1e4,
    func = "mean"
  )

dim(px)
head(px)
tail(px)

## -----------------------------------------------------------------------------
ncelev <- terra::rast(ncelev_path)
tdir <- tempdir(check = TRUE)
terra::writeRaster(ncelev, file.path(tdir, "test1.tif"), overwrite = TRUE)
terra::writeRaster(ncelev, file.path(tdir, "test2.tif"), overwrite = TRUE)
terra::writeRaster(ncelev, file.path(tdir, "test3.tif"), overwrite = TRUE)
terra::writeRaster(ncelev, file.path(tdir, "test4.tif"), overwrite = TRUE)
terra::writeRaster(ncelev, file.path(tdir, "test5.tif"), overwrite = TRUE)

rasts <- list.files(tdir, pattern = "tif$", full.names = TRUE)

pm <-
  par_multirasters(
    filenames = rasts,
    fun_dist = extract_at,
    x = NA,
    y = sf::st_as_sf(ncsamp)[1:500, ],
    id = "pid",
    radius = 1e4,
    func = "mean",
    .debug = TRUE
  )

dim(pm)
head(pm)
tail(pm)

## -----------------------------------------------------------------------------

gpkg_path <- system.file("extdata/osm_seoul.gpkg", package = "chopin")
bldg <- sf::st_read(gpkg_path, layer = "buildings")
grdpnt <- sf::st_read(gpkg_path, layer = "points")

# plot
plot(sf::st_geometry(bldg), col = "lightgrey")
plot(sf::st_geometry(grdpnt), add = TRUE, pch = 20, col = "blue")

## -----------------------------------------------------------------------------
# Radius for AER (meters)
radius_m <- 100

# This function will be dispatched in parallel over computational grids.
aer_at_points <-
  function(
    x, y,
    radius,
    id_col = "pid",
    floors_col = "floors",
    area_col = "foot_m2"
  ) {
    if (!inherits(x, "sf") && !inherits(y, "sf")) {
      x <- sf::st_as_sf(x)
      y <- sf::st_as_sf(y)
    }
    yorig <- y
    y <- sf::st_geometry(y)

    # Buffers around each point
    buf <- sf::st_buffer(y, radius)
    # spatial join (buildings intersecting buffers)
    j <- sf::st_intersects(buf, sf::st_geometry(x))
    # Compute
    out <- vapply(seq_along(j), function(i) {
      if (length(j[[i]]) == 0) return(NA_real_)
      sub <- x[j[[i]], ]
      sub <- sub[!is.na(sub[[floors_col]]) & !is.na(sub[[area_col]]), ]
      if (nrow(sub) == 0) return(NA_real_)
      aer_num <- sum(sub[[area_col]] * sub[[floors_col]], na.rm = TRUE)
      aer_den <- pi * radius^2
      aer_num / aer_den
    }, numeric(1))

    res <-
      data.frame(
        pid = yorig[[id_col]],
        aer = out
      )
    res
  }

## Parallel processing
# Initiate mirai damons
plan(mirai_multisession, workers = 4L)
grd <- chopin::par_pad_grid(
  bldg,
  mode = "grid",
  nx = 1L,
  ny = 4L,
  padding = 300
)

bldg_cast <- sf::st_cast(bldg, "POLYGON")
radius_m <- 300

res <- par_grid_mirai(
  grids    = grd,
  fun_dist = aer_at_points,
  x        = bldg_cast,
  y        = grdpnt,
  radius   = radius_m,
  id_col = "pid",
  .debug = TRUE
)
future::plan(future::sequential)
mirai::daemons(n = 0L)

head(res)

Try the chopin package in your browser

Any scripts or data that you put into this service are public.

chopin documentation built on Sept. 10, 2025, 5:08 p.m.