Nothing
#' Create a histogram plot from a data frame through ggplotly
#'
#' @param dt data.frame containing the data to plot.
#' @param value Name of the column to use as values on the y axis of the plot.
#' @param groups Name of the column containing the different groups.
#' @param binwidth Width of the histogram bins.
#' @param bins Number of bins. Overridden by binwidth. Defaults to 30.
#' @param scales From ggplot2::facet_wrap: Should scales be 'fixed', 'free', or free in one dimension ('free_x', 'free_y'). Default is 'fixed'.
#' @param ggtheme ggplot2 theme function to apply. Default is ggplot2::theme_minimal.
#' @param x_axis_label Label for the x axis.
#' @param plot_palette Character vector of hex codes specifying the colors to use on the plot.
#' @param plot_palette_generator Palette from the viridis package used in case plot_palette is unspecified or insufficient for the number of colors required.
#' @param static If TRUE (or if the dataset is over 10,000 rows), the output will be static ggplot chart instead of an interactive ggplotly chart. Default is FALSE.
#'
#' @export
#' @return A plotly-ized version of a grouped ggplot histogram plot.
#'
#' @examples
#' make_histogram(dt = iris,
#' value = 'Sepal.Length',
#' groups = 'Species')
#' @importFrom rlang .data
make_histogram <- function(dt,
value,
groups = NULL,
binwidth = NULL,
bins = 30,
scales = 'fixed',
ggtheme = 'minimal',
x_axis_label = NULL,
plot_palette = NULL,
plot_palette_generator = 'plasma',
static = FALSE){
dt_cols <- c(value, groups)
if(any((!dt_cols %in% colnames(dt)))){
stop(paste(setdiff(dt_cols, colnames(dt)), collapse = ', '), ' not found on dt.')
}
# coerce groups and split_groups_by to characters
if(!is.null(groups)){
dt <- chronicle::set_classes(dt, character = c(groups))
}
# check how many colors are needed for plotting
plot_palette_length <- ifelse(test = is.null(groups),
yes = 1,
no = data.table::uniqueN(dt[[groups]]))
# map the gg theme to its corresponding ggplot2::theme_ function
ggtheme <- switch(ggtheme,
'bw' = ggplot2::theme_bw,
'classic' = ggplot2::theme_classic,
'dark' = ggplot2::theme_dark,
'gray' = ggplot2::theme_gray,
'grey' = ggplot2::theme_grey,
'light' = ggplot2::theme_light,
'linedraw' = ggplot2::theme_linedraw,
'minimal' = ggplot2::theme_minimal,
'void' = ggplot2::theme_void,
ggplot2::theme_minimal)
# map the generator to its corresponding viridis palette
plot_palette_generator <- switch(plot_palette_generator,
'cividis' = viridis::cividis,
'inferno' = viridis::inferno,
'magma' = viridis::magma,
'plasma' = viridis::plasma,
'viridis' = viridis::viridis,
'mako' = viridis::mako,
'rocket' = viridis::rocket,
'turbo' = viridis::turbo,
viridis::plasma)
#if not provided, use palette from viridis::plasma
if(is.null(plot_palette)){
plot_palette <- plot_palette_generator(plot_palette_length, begin = 0, end = .80)
}else if(plot_palette_length > length(plot_palette)){
warning('Insufficient palette length provided for a histogram plot of ',
value, if(!is.null(groups)){paste(' by', groups)},
'. Adding the missing ', (plot_palette_length - length(plot_palette)),
' colors from plot_palette_generator')
plot_palette <- c(plot_palette,
plot_palette_generator(plot_palette_length - length(plot_palette), begin = 0, end = .8))
}
# create the plot structure depending of the group
hide_groups <- FALSE
if(is.null(groups)){
# make a dummy group variable
hide_groups <- TRUE
groups <- 'groups'
dt$groups <- 'A'
}
histogram <- ggplot2::ggplot(dt,
ggplot2::aes(x = .data[[value]],
fill = .data[[groups]],
color = .data[[groups]])) +
ggtheme() +
ggplot2::theme(panel.background = ggplot2::element_rect(fill = "transparent", colour = NA),
plot.background = ggplot2::element_rect(fill = "transparent", colour = NA)) +
ggplot2::scale_y_continuous(labels = scales::number_format(accuracy = 0.01,
decimal.mark = '.',
big.mark = ',')) +
ggplot2::geom_histogram(alpha = 0.85, bins = bins) +
ggplot2::scale_fill_manual(values = plot_palette) +
ggplot2::scale_color_manual(values = plot_palette)
if(hide_groups){
# remove all references to the dummy group variable from the plot
histogram <- histogram +
ggplot2::theme(legend.position = 'none',
axis.title.x = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.ticks.x = ggplot2::element_blank(),
strip.text.x = ggplot2::element_blank())
}
# axes
if(!is.null(x_axis_label)){
histogram <- histogram + ggplot2::xlab(x_axis_label)
}
# facet by groups (to avoid stacking)
histogram <- histogram + ggplot2::facet_wrap(stats::as.formula(paste(groups, '~ .')),
scales = scales)
# only convert to plotly if the dataset is under 10,000 rows
if(!as.logical(static) & nrow(dt) <= 10000){
histogram <- plotly::ggplotly(histogram,
tooltip = c('x', 'y', if(groups != 'groups'){'fill'}))
}
return(histogram)
}
#' Add a histogram plot to a chronicle report
#'
#' @param report Character string containing all the R Markdown chunks previously added. Default is '', an empty report.
#' @param dt data.frame containing the data to plot.
#' @param value Name of the column to use as values on the y axis of the plot.
#' @param groups Name of the column containing the different groups.
#' @param binwidth Width of the histogram bins.
#' @param bins Number of bins. Overridden by binwidth. Defaults to 30.
#' @param scales From ggplot2::facet_wrap: Should scales be 'fixed', 'free', or free in one dimension ('free_x', 'free_y'). Default is 'fixed'.
#' @param ggtheme ggplot2 theme function to apply. Default is ggplot2::theme_minimal.
#' @param x_axis_label Label for the x axis.
#' @param plot_palette Character vector of hex codes specifying the colors to use on the plot.
#' @param plot_palette_generator Palette from the viridis package used in case plot_palette is unspecified or insufficient for the number of colors required.
#' @param histogram_title Title of the histogram plot section on the report. If NULL, chronicle will try to parse a generic title using make_title()
#' @param title_level Level of the section title of this plot (ie, number of # on Rmarkdown syntax.)
#' @param echo Whether to display the source code in the output document. Default is FALSE.
#' @param message Whether to preserve messages on rendering. Default is FALSE.
#' @param warning Whether to preserve warnings on rendering. Default is FALSE.
#' @param fig_width Width of the plot (in inches).
#' @param fig_height Height of the plot (in inches).
#'
#' @return An rmarkdown chunk as a character string, now containing a chunk for adding the histogram plot.
#' @export
#'
#' @examples
#' html_report <- add_histogram(report = "",
#' dt = iris,
#' value = 'Sepal.Length',
#' groups = 'Species')
#' cat(html_report)
add_histogram <- function(report = '',
dt,
value,
groups = NULL,
binwidth = NULL,
bins = NULL,
scales = 'fixed',
ggtheme = NULL,
x_axis_label = NULL,
plot_palette = NULL,
plot_palette_generator = NULL,
histogram_title = NULL,
title_level = 2,
echo = FALSE,
message = FALSE,
warning = FALSE,
fig_width = NULL,
fig_height = NULL){
dt_cols <- c(value, groups)
if(any((!dt_cols %in% colnames(dt)))){
stop(paste(setdiff(dt_cols, colnames(dt)), collapse = ', '), ' not found on dt.')
}
params <- list(dt = ifelse(test = is.character(dt),
yes = dt,
no = deparse(substitute(dt))),
value = value,
groups = groups,
binwidth = binwidth,
bins = bins,
scales = scales,
ggtheme = ggtheme,
x_axis_label = x_axis_label,
plot_palette = ifelse(is.null(plot_palette), 'params$plot_palette', plot_palette),
plot_palette_generator = ifelse(is.null(plot_palette_generator), 'params$plot_palette_generator', plot_palette_generator),
static = 'params$set_static') %>%
purrr::discard(is.null)
report <- chronicle::add_chunk(report = report,
fun = chronicle::make_histogram,
params = params,
chunk_title = histogram_title,
title_level = title_level,
echo = echo,
message = message,
warning = warning,
fig_width = fig_width,
fig_height = fig_height,
guess_title = TRUE)
return(report)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.