Nothing
#' Circulating capital model 1 using the New Interpretation.
#'
#' This function computes the uniform rate of profit, prices of production and labor values for a basic circulating capital model using the New Interpretation. The model has uniform wage rates across industries and does not take account of unproductive labor for labor value calculations.
#'
#' @param A input-output matrix (n x n).
#' @param l vector of complex labor input (1 x n).
#' @param w uniform nominal wage rate (scalar).
#' @param v value of labor power (scalar)
#' @param Q gross output vector (n x 1).
#' @param l_simple vector of simple labor input (1 x n).
#'
#' @importFrom popdemo isIrreducible
#'
#' @return A list with the following elements:
#' \item{meig}{Maximum eigen value of A}
#' \item{urop}{Uniform rate of profit (as a fraction)}
#' \item{mrop}{Maximum rate of profit (as a fraction)}
#' \item{ppabs}{Price of production vector (absolute)}
#' \item{pprel}{Price of production vector (relative)}
#' \item{lvalues}{Labor values vector}
#' \item{mevn}{Monetary expression of value using net output}
#' \item{mevg}{Monetary expression of value using gross output}
#' \item{Anonneg}{Is A Nonnegative? (1=Y,0=N)}
#' \item{Airred}{Is A Irreducible? (1=Y,0=N)}
#'
#'@references Basu, Deepankar and Moraitis, Athanasios, "Alternative Approaches to Labor Values andPrices of Production: Theory and Evidence" (2023). Economics Department Working Paper Series. 347. URL: https://scholarworks.umass.edu/econ_workingpaper/347/
#'
#' @export
#'
#' @examples
#'
#' # ------ Data
#' # Input-output matrix
#' A <- matrix(
#' data = c(0.265,0.968,0.00681,0.0121,0.391,0.0169,0.0408,0.808,0.165),
#' nrow=3, ncol=3, byrow = TRUE
#' )
#' # Direct labor input vector (complex)
#' l <- matrix(
#' data = c(0.193, 3.562, 0.616),
#' nrow=1
#' )
#' # Real wage bundle
#' b <- matrix(
#' data = c(0.0109, 0.0275, 0.296),
#' ncol=1
#' )
#' # Gross output vector
#' Q <- matrix(
#' data = c(26530, 18168, 73840),
#' ncol=1
#' )
#' # Direct labor input vector (simple)
#' l_simple <- l
#' # Market price vector
#' m <- matrix(data = c(4, 60, 7),nrow=1)
#' # Uniform nominal wage rate
#' wavg <- m%*%b
#' # Value of labor power
#' v <- 2/3
#' # Compute prices of production
#' ppnewint1(A = A,l = l,w = wavg[1,1],v=v,Q = Q,l_simple = l)
#'
ppnewint1 <- function(A, l, w, v, Q, l_simple){
# Necessary conditon (v<1)
if(v>=(l_simple%*%Q)/(l%*%Q)){
stop("Necessary condition violated; Uniform rate of profit cannot be computed.")
} else{
# Identity matrix
I <- diag(ncol(A))
# Net output
y <- (I-A)%*%Q
# -- Maximum eigenvalue of A
maxEigenv <- max(Mod(eigen(A)$values))
# Is A nonnegative?
nn_A <- ifelse(min(A)>=0,1,0)
# Is A irreducible?
ir_A <- ifelse(popdemo::isIrreducible(A),1,0)
# -- Maximum rate of profit
R <- (1/maxEigenv)-1
# ----- Solve for uniform rate of profit
# -- Define Univariate Function of rate of profit
myfunc <- function(r2){
return(
(1+r2)*w*l%*%solve(I-(1+r2)*A)%*%y - ((w*l_simple)%*%Q)/v
)
}
# Find root to get uniform rate of profit
# Note: upper bound should be kept less than
# R because the function blows up at R
r <- stats::uniroot(myfunc,c(0,(R-0.00001)))$root
# ----- Solve for price of production vector
p_abs <- (1+r)*(w*l)%*%solve(I-(1+r)*A)
colnames(p_abs) <- colnames(l)
# Vector of values
# Note: we use the labor input adjusted for complexity
lambda <- l_simple%*%solve(I - A)
colnames(lambda) <- colnames(l_simple)
# MEV
mev <- (p_abs%*%y)/(l %*%Q)
# Monetary expression of value (using gross output)
mev_gross <- (p_abs%*%Q)/(lambda%*%Q)
# Results as a list
return(list(meig = maxEigenv,
mrop = R,
urop = r,
ppabs = p_abs,
pprel = p_abs/p_abs[1],
lvalues = lambda,
mevn = mev[1,1],
mevg = mev_gross[1,1],
Anonneg = nn_A,
Airred = ir_A
)
)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.