Nothing
###############################################################################
# clusterCons - Consensus clustering functions for R
#
# Author: Dr. T. Ian Simpson
# Affiliation : University of Edinburgh
# E-mail : ian.simpson@ed.ac.uk
#
# Example script number 1 - basic use with simulated data
#
###############################################################################
#perform some test analyses using clusterCons
library(clusterCons);
#PART ONE - simulated profile data (true k=4)
#load up the data
data('sim_profile');
#perform the re-sampling with five different algorithms
cmr <- cluscomp(sim_profile,algorithms=list('kmeans','pam','agnes'),merge=0,clmin=2,clmax=6,reps=5);
#show the result list
summary(cmr);
#explore the cluster robustness for all k values
for(i in 1:length(cmr)){
print(names(cmr)[i],q=F);
print(clrob(cmr[[i]]),q=F);
}
#when k=4 show the cluster robustness
for(i in 1:length(cmr)){
if(cmr[[i]]@k==4){
print(names(cmr)[i],q=F);
print(clrob(cmr[[i]]),q=F);
}
}
#when k=4 and algo is kmeans find the membership robustness values
mr <- memrob(cmr$e3_agnes_k4);
#show what this object holds
summary(mr);
#show the membership robustness for cluster1
mr$cluster1;
#show the whole membership matrix
mr$resultmatrix;
#calculating area under curve (AUC)
#we can calculate the AUC for individual consensus matrices (note you must pass the consensus matrix itself @cm)
aci <- auc(cmr$e3_agnes_k5@cm);
#or for the entire result set to assess performance over clusters between algorithms and/or experimental conditions
ac <-aucs(cmr);
#basic AUC plot
aucplot(ac);
#we can also calculate the change in AUC by cluster number, deltak
dk <- deltak(ac);
#basic delta-K plot
dkplot(dk)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.