Nothing
###############################################################################
# clusterCons - Consensus clustering functions for R
#
# Author: Dr. T. Ian Simpson
# Affiliation : University of Edinburgh
# E-mail : ian.simpson@ed.ac.uk
#
# Example script number 2 - more advanced use with data from Golub et al. 1999
###############################################################################
#perform some test analyses using clusterCons
library(clusterCons);
#load in some real gene expression data
data('golub');
#call the cluscomp method
cmr <- cluscomp(data.frame(t(golub)),algorithms=list('kmeans','pam'),merge=0,clmin=2,clmax=5,reps=10)
#exploring the cmr
summary(cmr);
summary(cmr$e1_kmeans_k3);
getClass('consmatrix');
#lets look at a heat map
cm <- cmr$e1_kmeans_k3;
heatmap(cm@cm);
#get cluster robustness
cr <- clrob(cm);
#get member robustness
mr <- memrob(cm);
#lets expore the mr list
summary(mr);
#get the member robustness for the first cluster
mr$cluster1;
#now lets move to looking at some comparisons
#calculate the areas under the curves
ac <- aucs(cmr);
#plot out the auc curves
aucplot(ac);
#now lets calculate the deltak
dk <- deltak(ac);
#plot out the results to find optimal class number
dkplot(dk)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.