Nothing
library(clustord)
set.seed(100)
long.df.sim <- data.frame(Y=factor(sample(1:3,5*100,replace=TRUE)),
ROW=factor(rep(1:100,times=5)),COL=rep(1:5,each=100))
library(ostereotype)
muvec <- c(0,-0.5,0.5,1)
phivec <- c(0,0.2,0.7,1)
eta1 <- 0.5
eta2 <- -0.5
ymat1 <- matrix(rstereotype(5*300,muvec,phivec,eta1,.useCpp = FALSE),ncol=5)
ymat2 <- matrix(rstereotype(5*700,muvec,phivec,eta2,.useCpp = FALSE),ncol=5)
ymat3 <- matrix(rstereotype(5*300,muvec,phivec,eta2,.useCpp = FALSE),ncol=5)
ymat4 <- matrix(rstereotype(5*700,muvec,phivec,eta1,.useCpp = FALSE),ncol=5)
ymat <- cbind(rbind(ymat1,ymat2),rbind(ymat3,ymat4))
long.df.sim <- data.frame(Y=factor(as.vector(ymat)),ROW=rep(1:1000,times=10),COL=rep(1:10,each=1000))
### OSM results ----------------------------------------------------------------
set.seed(1)
results <- clustord(Y~ROWCLUST+COLCLUST,
model="OSM",
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3), nstarts=20)
set.seed(1)
results <- clustord(Y~ROWCLUST*COLCLUST,
model="OSM",
nclus.row=2, nclus.column=2, long.df=long.df.sim,
start_from_simple_model = TRUE,
EM.control=list(EMcycles=3), nstarts=20)
results <- clustord(Y~ROWCLUST+COLCLUST+ROWCLUST:COLCLUST,
model="OSM",
nclus.row=2, nclus.column=2, long.df=long.df.sim,
start_from_simple_model = FALSE,
EM.control=list(EMcycles=3))
rm(pi.init,kappa.init)
initvect <- c(-0.8,0.7,0.2,2,0.25)
results <- clustord(Y~ROWCLUST+COLCLUST,
model="OSM", initvect=initvect,
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3))
pi.init <- c(0.1,0.9)
kappa.init <- c(0.4,0.6)
initvect <- c(-0.8,0.7,0.2,2,0.25)
results <- clustord(Y~ROWCLUST+COLCLUST,
model="OSM", initvect=initvect, pi.init=pi.init, kappa.init=kappa.init,
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3))
initvect <- c(-0.8,0.7,0.2,2,0.25,0.4)
results <- clustord(Y~ROWCLUST*COLCLUST,
model="OSM", initvect=initvect, pi.init=pi.init, kappa.init=kappa.init,
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3))
### POM results ----------------------------------------------------------------
set.seed(1)
results <- clustord(Y~ROWCLUST+COLCLUST,
model="POM",
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3))
results <- clustord(Y~ROWCLUST*COLCLUST,
model="POM",
nclus.row=2, nclus.column=2, long.df=long.df.sim,
start_from_simple_model = TRUE,
EM.control=list(EMcycles=3))
results <- clustord(Y~ROWCLUST*COLCLUST,
model="POM",
nclus.row=2, nclus.column=2, long.df=long.df.sim,
start_from_simple_model = FALSE,
EM.control=list(EMcycles=3))
pi.init <- c(0.1,0.9)
kappa.init <- c(0.4,0.6)
initvect <- c(-0.8,0.7,2,0.25)
results <- clustord(Y~ROWCLUST+COLCLUST,
model="POM", initvect=initvect, pi.init=pi.init, kappa.init=kappa.init,
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3))
initvect <- c(-0.8,0.7,2,0.25,0.4)
results <- clustord(Y~ROWCLUST*COLCLUST,
model="POM", initvect=initvect, pi.init=pi.init, kappa.init=kappa.init,
nclus.row=2, nclus.column=2, long.df=long.df.sim,
EM.control=list(EMcycles=3))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.