R/coefplot.r

Defines functions plotcoef coefplot.rxLogit coefplot.rxLinMod coefplot.rxGlm coefplot.glm coefplot.lm coefplot.data.frame coefplot.default coefplot

Documented in coefplot coefplot coefplot.data.frame coefplot.default coefplot.glm coefplot.lm coefplot.rxGlm coefplot.rxLinMod coefplot.rxLogit plotcoef

## the generic function for coefplot
## this way it can be used for more than just the generalized family of linear models

## Should there be a seperate help file for each coefplot method?

#' Dotplot for model coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted model
#'
#' \code{coefplot} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' This can be extended with new methods for other types of models not currently available.
#'
#' A future iteration of \code{coefplot.glm} will also allow for plotting the coefficients on the transformed scale.
#'
#' See \code{\link{coefplot.lm}} for specific documentation and the return value.
#'
#' @aliases coefplot plotcoef
#' @author Jared P. Lander
#' @seealso \code{\link{coefplot.lm}}
#' @param model The fitted model with coefficients to be plotted
#' @param \dots See \code{\link{coefplot.lm}} for argument details
#' @return A ggplot2 object or data.frame.  See details in \code{\link{coefplot.lm}} for more information
#' @export coefplot plotcoef
#' @keywords coefplot dotplot coefficient coefficients model lm glm rxLinMod linear
#' @import ggplot2 plyr useful
#' @examples
#' 
#' data(diamonds)
#' head(diamonds)
#' model1 <- lm(price ~ carat + cut*color, data=diamonds)
#' model2 <- lm(price ~ carat*color, data=diamonds)
#' model3 <- glm(price > 10000 ~ carat*color, data=diamonds)
#' coefplot(model1)
#' coefplot(model2)
#' coefplot(model3)
#' coefplot(model1, predictors="color")
#' coefplot(model1, predictors="color", strict=TRUE)
#' coefplot(model1, coefficients=c("(Intercept)", "color.Q"))
#' coefplot(model1, predictors="cut", coefficients=c("(Intercept)", "color.Q"), strict=TRUE)
#' coefplot(model1, predictors="cut", coefficients=c("(Intercept)", "color.Q"), strict=FALSE)
#' coefplot(model1, predictors="cut", coefficients=c("(Intercept)", "color.Q"), 
#' strict=TRUE, newNames=c(color.Q="Color", "cut^4"="Fourth"))
#' coefplot(model1, predictors=c("(Intercept)", "carat"), newNames=c(carat="Size"))
#' coefplot(model1, predictors=c("(Intercept)", "carat"), 
#' newNames=c(carat="Size", "(Intercept)"="Constant"))
#'
coefplot <- function(model, ...)
{
    UseMethod(generic="coefplot")
}



## the default method for coefplot
#' coefplot.default
#' 
#' Dotplot for coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted model
#'
#' \code{\link{coefplot}} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' This method also plots coefficients from glm (using coefplot.lm) and rxLinMod models (through a redirection from coefplot.rxLinMod)
#'
#' @aliases coefplot.default
#' @author Jared P. Lander
#' @param model The model to plot.
#' @param title The name of the plot, if NULL then no name is given
#' @param xlab The x label
#' @param ylab The y label
#' @param innerCI How wide the inner confidence interval should be, normally 1 standard deviation.  If 0, then there will be no inner confidence interval.
#' @param outerCI How wide the outer confidence interval should be, normally 2 standard deviations.  If 0, then there will be no outer confidence interval.
#' @param lwdInner The thickness of the inner confidence interval
#' @param lwdOuter The thickness of the outer confidence interval
#' @param pointSize Size of coefficient point
#' @param color The color of the points and lines
#' @param shape The shape of the points
#' @param cex The text size multiplier, currently not used
#' @param textAngle The angle for the coefficient labels, 0 is horizontal
#' @param numberAngle The angle for the value labels, 0 is horizontal
#' @param zeroColor The color of the line indicating 0
#' @param zeroLWD The thickness of the 0 line
#' @param zeroType The type of 0 line, 0 will mean no line
#' @param facet logical; If the coefficients should be faceted by the variables, numeric coefficients (including the intercept) will be one facet.  Currently not available.
#' @param scales The way the axes should be treated in a faceted plot.  Can be c("fixed", "free", "free_x", "free_y").  Currently not available.
#' @param sort Determines the sort order of the coefficients.  Possible values are c("natural", "normal", "magnitude", "size", "alphabetical")
#' @param decreasing logical; Whether the coefficients should be ascending or descending
#' @param numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.  Currently not available.
#' @param fillColor The color of the confidence bounds for a numeric factor.  Currently not available.
#' @param alpha The transparency level of the numeric factor's confidence bound.  Currently not available.
#' @param horizontal logical; If the plot should be displayed horizontally.  Currently not available.
#' @param intercept logical; Whether the Intercept coefficient should be plotted
#' @param interceptName Specifies name of intercept it case it is not the default of "(Intercept").
#' @param plot logical; If the plot should be drawn, if false then a data.frame of the values will be returned
#' @param predictors A character vector specifying which coefficients to keep.  Each individual coefficient can be specified.  Use predictors to specify entire factors.
#' @param coefficients A character vector specifying which factor coefficients to keep.  It will keep all levels and any interactions, even if those are not listed.
#' @param strict If TRUE then predictors will only be matched to its own coefficients, not its interactions
##See Details for information on \code{factors}, \code{only} and \code{shorten}
#' @param newNames Named character vector of new names for coefficients
### non-listed arguments
#' @param trans A transformation function to apply to the values and confidence intervals.  \code{identity} by default.  Use \code{invlogit} for binary regression.
#' @param factors Vector of factor variables that will be the only ones shown
#' @param only logical; If factors has a value this determines how interactions are treated.  True means just that variable will be shown and not its interactions.  False means interactions will be included.
#' @param shorten logical or character; If \code{FALSE} then coefficients for factor levels will include their variable name.  If \code{TRUE} coefficients for factor levels will be stripped of their variable names.  If a character vector of variables only coefficients for factor levels associated with those variables will the variable names stripped.  Currently not available.
#' @param \dots Arguments passed on to other functions
#' @return If \code{plot} is \code{TRUE} then a \code{\link{ggplot}} object is returned.  Otherwise a \code{\link{data.frame}} listing coeffcients and confidence bands is returned.
#' @seealso \code{\link{lm}} \code{\link{glm}} \code{\link{ggplot}} \code{\link{coefplot}} \code{\link{plotcoef}}
#' @export coefplot.default
#' @export
#' @method coefplot default
#' @examples
#' 
#' data(diamonds)
#' head(diamonds)
#' model1 <- lm(price ~ carat + cut*color, data=diamonds)
#' model2 <- lm(price ~ carat*color, data=diamonds)
#' coefplot(model1)
#' coefplot(model2)
#' coefplot(model1, predictors="color")
#' coefplot(model1, predictors="color", strict=TRUE)
#' coefplot(model1, coefficients=c("(Intercept)", "color.Q"))
#'
coefplot.default <- function(model, title="Coefficient Plot", xlab="Value", ylab="Coefficient", 
                             innerCI=1, outerCI=2, lwdInner=1, lwdOuter=0, pointSize=3,  color="blue", shape=16,
                             cex=.8, textAngle=0, numberAngle=0,
                             zeroColor="grey", zeroLWD=1, zeroType=2,
                             facet=FALSE, scales="free",
                             sort=c("natural", "magnitude", "alphabetical"), decreasing=FALSE,
                             numeric=FALSE, fillColor="grey", alpha=1/2,
                             horizontal=FALSE, factors=NULL, only=NULL, shorten=TRUE,
                             intercept=TRUE, interceptName="(Intercept)", coefficients=NULL, predictors=NULL, strict=FALSE, 
                             trans=identity,
                             newNames=NULL, plot=TRUE, ...)
{
	theDots <- list(...)
	
    # get variables that have multiple options
    sort <- match.arg(sort)
    #print(coefficients);print("hello");print(predictors)
    # construct a data.frame containing confidence interval information
    modelCI <- buildModelCI(model, outerCI=outerCI, innerCI=innerCI, intercept=intercept, 
                            coefficients=coefficients, predictors=predictors, strict=strict, newNames=newNames,
                            numeric=numeric, sort=sort, 
                            trans=trans,
                            decreasing=decreasing, factors=factors, only=only, shorten=shorten, ...)
    
    # if not plotting just return the modelCI data.frame
    if(!plot)
    {
        return(modelCI)
    }
    
    p <- coefplot.data.frame(model=modelCI,
                        #modelMeltInner=modelMeltInner, modelMeltOuter=modelMeltOuter,
                       title=title, xlab=xlab, ylab=ylab,
                       lwdInner=lwdInner, lwdOuter=lwdOuter, pointSize=pointSize, color=color, cex=cex, textAngle=textAngle, 
                       numberAngle=numberAngle, zeroColor=zeroColor, zeroLWD=zeroLWD, outerCI=outerCI, innerCI=innerCI, multi=FALSE,
                       zeroType=zeroType, numeric=numeric, fillColor=fillColor, alpha=alpha, 
                       horizontal=horizontal, facet=facet, scales=scales)
    
    #rm(modelCI);    	# housekeeping
	return(p)		# return the ggplot object
}

#' @title coefplot.data.frame
#' @description Dotplot for coefficients
#' @details A graphical display of the coefficients and standard errors from a fitted model, this function uses a data.frame as the input.
#' @aliases coefplot.data.frame
#' @author Jared P. Lander
#' @export coefplot.data.frame
#' @export
#' @param model A data.frame like that built from coefplot(..., plot=FALSE)
#' @param title The name of the plot, if NULL then no name is given
#' @param xlab The x label
#' @param ylab The y label
#' @param innerCI How wide the inner confidence interval should be, normally 1 standard deviation.  If 0, then there will be no inner confidence interval.
#' @param outerCI How wide the outer confidence interval should be, normally 2 standard deviations.  If 0, then there will be no outer confidence interval.
#' @param multi logical; If this is for \code{\link{multiplot}} then leave the colors as determined by the legend, if FALSE then make all colors the same
#' @param lwdInner The thickness of the inner confidence interval
#' @param lwdOuter The thickness of the outer confidence interval
#' @param pointSize Size of coefficient point
#' @param color The color of the points and lines
#' @param shape The shape of the points
#' @param linetype The linetype of the error bars
#' @param cex The text size multiplier, currently not used
#' @param textAngle The angle for the coefficient labels, 0 is horizontal
#' @param numberAngle The angle for the value labels, 0 is horizontal
#' @param zeroColor The color of the line indicating 0
#' @param zeroLWD The thickness of the 0 line
#' @param zeroType The type of 0 line, 0 will mean no line
#' @param facet logical; If the coefficients should be faceted by the variables, numeric coefficients (including the intercept) will be one facet
#' @param scales The way the axes should be treated in a faceted plot.  Can be c("fixed", "free", "free_x", "free_y")
#' @param numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.
#' @param fillColor The color of the confidence bounds for a numeric factor
#' @param alpha The transparency level of the numeric factor's confidence bound
#' @param horizontal logical; If the plot should be displayed horizontally
#' @param value Name of variable for value metric
#' @param coefficient Name of variable for coefficient names
#' @param errorHeight Height of error bars
#' @param dodgeHeight Amount of vertical dodging
#' @param \dots Further Arguments
#' @return a ggplot graph object
#' @examples 
#' data(diamonds)
#' head(diamonds)
#' model1 <- lm(price ~ carat + cut*color, data=diamonds)
#' model2 <- lm(price ~ carat*color, data=diamonds)
#' df1 <- coefplot(model1, plot=FALSE)
#' df2 <- coefplot(model2, plot=FALSE)
#' coefplot(df1)
#' coefplot(df2)
#' 
coefplot.data.frame <- function(model, title="Coefficient Plot", 
                                xlab="Value", ylab="Coefficient", lwdInner=1, lwdOuter=0, 
                                pointSize=3, color="blue", cex=.8, textAngle=0, numberAngle=0, 
                                shape=16, linetype=1,
                                outerCI=2, innerCI=1, multi=FALSE, 
                                zeroColor="grey", zeroLWD=1, zeroType=2, 
                                numeric=FALSE, fillColor="grey", alpha=1/2,
                                horizontal=FALSE, facet=FALSE, scales="free",
                                value="Value", coefficient="Coefficient", 
                                errorHeight=0, dodgeHeight=1,
                                ...)
{
    buildPlotting.default(modelCI=model,
                          #modelMeltInner=modelMeltInner, modelMeltOuter=modelMeltOuter,
                          title=title, xlab=xlab, ylab=ylab,
                          lwdInner=lwdInner, lwdOuter=lwdOuter, pointSize=pointSize, color=color, cex=cex, textAngle=textAngle, 
                          numberAngle=numberAngle, zeroColor=zeroColor, zeroLWD=zeroLWD, outerCI=outerCI, innerCI=innerCI, multi=FALSE,
                          zeroType=zeroType, numeric=numeric, fillColor=fillColor, alpha=alpha, 
                          horizontal=horizontal, facet=facet, scales=scales)
}

#' coefplot.lm
#' 
#' Dotplot for lm coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted lm model
#'
#' \code{\link{coefplot}} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' For more information on this function and it's arguments see \code{\link{coefplot.default}}
#'
#' @aliases coefplot.lm
#' @export coefplot.lm
#' @export
#' @method coefplot lm
#' @author Jared P. Lander
#' @param \dots All arguments are passed on to \code{\link{coefplot.default}}.  Please see that function for argument information.
#' @return A ggplot object.  See \code{\link{coefplot.lm}} for more information.
#' @examples
#' 
#' model1 <- lm(price ~ carat + cut*color, data=diamonds)
#' coefplot(model1)
coefplot.lm <- function(...)
{
    coefplot.default(...)
}

#' coefplot.glm
#' 
#' Dotplot for glm coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted glm model
#'
#' \code{\link{coefplot}} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' For more information on this function and it's arguments see \code{\link{coefplot.default}}
#'
#' @aliases coefplot.glm
#' @export coefplot.glm
#' @export
#' @method coefplot glm
#' @author Jared P. Lander
#' @param \dots All arguments are passed on to \code{\link{coefplot.default}}.  Please see that function for argument information.
#' @return A ggplot object.  See \code{\link{coefplot.lm}} for more information.
#' @examples
#' 
#' model2 <- glm(price > 10000 ~ carat + cut*color, data=diamonds, family=binomial(link="logit"))
#' coefplot(model2)
#' coefplot(model2, trans=invlogit)
coefplot.glm <- function(...)
{
    coefplot.default(...)
}


#' coefplot.rxGlm
#' 
#' Dotplot for rxGlm coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted rxGlm model
#'
#' \code{\link{coefplot}} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' For more information on this function and it's arguments see \code{\link{coefplot.default}}
#'
#' @aliases coefplot.rxGlm
#' @export coefplot.rxGlm
#' @export
#' @method coefplot rxGlm
#' @author Jared P. Lander
#' @param \dots All arguments are passed on to \code{\link{coefplot.default}}.  Please see that function for argument information.
#' @return A ggplot object.  See \code{\link{coefplot.lm}} for more information.
#' @examples
#' 
#' \dontrun{
#' mod4 <- rxGlm(price ~ carat + cut + x, data=diamonds)
#' mod5 <- rxGlm(price > 10000 ~ carat + cut + x, data=diamonds, family="binomial")
#' coefplot(mod4)
#' coefplot(mod5)
#' }
#' 
coefplot.rxGlm <- function(...)
{
    mf <- match.call(expand.dots=TRUE)
#     if("predictors" %in% names(mf) && !is.null(mf$predictors))
#     {
#         stop("predictors argument cannot be used for RevoScaleR models")
#     }
    coefplot.default(...)
}

## just simply call coefplot.lm which will work just fine
#' coefplot.rxLinMod
#' 
#' Dotplot for rxLinMod coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted rxLinMod model
#'
#' \code{\link{coefplot}} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' For more information on this function and it's arguments see \code{\link{coefplot.lm}}
#'
#' @aliases coefplot.rxLinMod
#' @export coefplot.rxLinMod
#' @export
#' @method coefplot rxLinMod
#' @author Jared P. Lander www.jaredlander.com
#' @param \dots All arguments are passed on to \code{\link{coefplot.lm}}.  Please see that function for argument information.
#' @return A ggplot object.  See \code{\link{coefplot.lm}} for more information.
#' @examples
#' 
#' \dontrun{
#' data(diamonds)
#' mod3 <- rxLinMod(price ~ carat + cut + x, data=diamonds)
#' coefplot(mod3)
#' }
coefplot.rxLinMod <- function(...)
{
    mf <- match.call(expand.dots=TRUE)
#     if("predictors" %in% names(mf) && !is.null(mf$predictors))
#     {
#         stop("predictors argument cannot be used for RevoScaleR models")
#     }
    coefplot.default(...)
}


## just simply call coefplot.lm which will work just fine
#' coefplot.rxLogit
#' 
#' Dotplot for rxLogit coefficients
#'
#' A graphical display of the coefficients and standard errors from a fitted rxLogit model
#'
#' \code{\link{coefplot}} is the S3 generic method for plotting the coefficients from a fitted model.
#'
#' For more information on this function and it's arguments see \code{\link{coefplot.lm}}
#'
#' @aliases coefplot.rxLogit
#' @export coefplot.rxLogit
#' @export
#' @method coefplot rxLogit
#' @author Jared P. Lander www.jaredlander.com
#' @param \dots All arguments are passed on to \code{\link{coefplot.lm}}.  Please see that function for argument information.
#' @return A ggplot object.  See \code{\link{coefplot.lm}} for more information.
#' @examples
#' 
#' \dontrun{
#' data(diamonds)
#' mod6 <- rxLogit(price > 10000 ~ carat + cut + x, data=diamonds)
#' coefplot(mod6)
#' }
coefplot.rxLogit <- function(...)
{
    mf <- match.call(expand.dots=TRUE)
#     if("predictors" %in% names(mf) && !is.null(mf$predictors))
#     {
#         stop("predictors argument cannot be used for RevoScaleR models")
#     }
    coefplot.default(...)
}

# coefplot.glmnet <- function(..., lambda=NULL)
# {
#     
#     modelCI <- extract.coef(model, s=s)
#     
#     # if not plotting just return the modelCI data.frame
#     if(!plot)
#     {
#         return(modelCI)
#     }
# }
# 
# coefplot.cv.glmnet <- function(...)
# {
#     
# }
# 
# extract.coef.glmnet <- function(model, s=median(model$lambda), ...)
# {
#     # get coefficients
#     theCoef <- coefficients(object=model, s=s)
#     # find non zero indices
#     nonZeroIndex <- which(theCoef != 0)
#     data.frame(Coefficient=rownames(theCoef)[nonZeroIndex], Value=theCoef[nonZeroIndex])
# }


# just another name for it
plotcoef <- function(...)
{
    coefplot(...)
}

Try the coefplot package in your browser

Any scripts or data that you put into this service are public.

coefplot documentation built on Jan. 4, 2018, 5:12 p.m.