Defines functions multiplot

Documented in multiplot

### Functions for plotting multiple coefplots at once
#' Plot multiple coefplots
#' Plot the coefficients from multiple models
#' Plots a graph similar to \code{\link{coefplot}} but for multiple plots at once.
#' For now, if \code{names} is provided the plots will appear in alphabetical order of the names.  This will be adjusted in future iterations.  When setting \code{by} to "Model" and specifying exactly one variable in \code{variables} that one coefficient will be plotted repeatedly with the axis labeled by model.  This is Andy Gelman's secret weapon.
#' @export multiplot
#' @seealso \code{link{coefplot}}
#' @param \dots Models to be plotted
#' @param title  The name of the plot, if NULL then no name is given
#' @param xlab The x label
#' @param ylab The y label
#' @param innerCI How wide the inner confidence interval should be, normally 1 standard deviation.  If 0, then there will be no inner confidence interval.
#' @param outerCI How wide the outer confidence interval should be, normally 2 standard deviations.  If 0, then there will be no outer confidence interval.
#' @param lwdInner The thickness of the inner confidence interval
#' @param lwdOuter The thickness of the outer confidence interval
#' @param pointSize Size of coefficient point
#' @param dodgeHeight Amount of vertical dodging
#' @param color The color of the points and lines
#' @param shape The shape of the points
#' @param linetype The type of line drawn for the standard errors
#' @param cex The text size multiplier, currently not used
#' @param textAngle The angle for the coefficient labels, 0 is horizontal
#' @param numberAngle The angle for the value labels, 0 is horizontal
#' @param zeroColor The color of the line indicating 0
#' @param zeroLWD The thickness of the 0 line
#' @param zeroType The type of 0 line, 0 will mean no line
## @param facet logical; If the coefficients should be faceted by the variables, numeric coefficients (including the intercept) will be one facet
#' @param single logical; If TRUE there will be one plot with the points and bars stacked, otherwise the models will be displayed in separate facets
#' @param scales The way the axes should be treated in a faceted plot.  Can be c("fixed", "free", "free_x", "free_y")
#' @param ncol The number of columns that the models should be plotted in
#' @param sort Determines the sort order of the coefficients.  Possible values are c("natural", "magnitude", "alphabetical")
#' @param decreasing logical; Whether the coefficients should be ascending or descending
#' @param names Names for models, if NULL then they will be named after their inputs
#' @param numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.
#' @param fillColor The color of the confidence bounds for a numeric factor
#' @param alpha The transparency level of the numeric factor's confidence bound
#' @param horizontal logical; If the plot should be displayed horizontally
#' @param intercept logical; Whether the Intercept coefficient should be plotted
#' @param interceptName Specifies name of intercept it case it is not the default of "(Intercept").
#' @param predictors A character vector specifying which coefficients to keep.  Each individual coefficient can be specified.  Use predictors to specify entire factors
#' @param coefficients A character vector specifying which factor coefficients to keep.  It will keep all levels and any interactions, even if those are not listed.
#' @param strict If TRUE then predictors will only be matched to its own coefficients, not its interactions
#' @param newNames Named character vector of new names for coefficients
#' @param trans A transformation function to apply to the values and confidence intervals.  \code{identity} by default.  Use \code{invlogit} for binary regression.
#' @param plot logical; If the plot should be drawn, if false then a data.frame of the values will be returned
#' @param factors Vector of factor variables that will be the only ones shown
#' @param only logical; If factors has a value this determines how interactions are treated.  True means just that variable will be shown and not its interactions.  False means interactions will be included.
#' @param shorten logical or character; If \code{FALSE} then coefficients for factor levels will include their variable name.  If \code{TRUE} coefficients for factor levels will be stripped of their variable names.  If a character vector of variables only coefficients for factor levels associated with those variables will the variable names stripped.
#' @param drop logical; if TRUE then models without valid coefficients to show will not be plotted
#' @param by If "Coefficient" then a normal multiplot is plotted, if "Model" then the coefficients are plotted along the axis with one for each model.  If plotting by model only one coefficient at a time can be selected.  This is called the secret weapon by Andy Gelman.
#' @param plot.shapes If \code{TRUE} points will have different shapes for different models
#' @param plot.linetypes If \code{TRUE} lines will have different shapes for different models
#' @param legend.position position of legend, one of "left", "right", "bottom", "top", "none"
#' @param secret.weapon If this is \code{TRUE} and exactly one coefficient is listed in coefficients then Andy Gelman's secret weapon is plotted.
#' @param legend.reverse Setting to reverse the legend in a multiplot so that it matches the order they are drawn in the plot
#' @return A ggplot object
#' @examples
#' data(diamonds)
#' model1 <- lm(price ~ carat + cut, data=diamonds)
#' model2 <- lm(price ~ carat + cut + color, data=diamonds)
#' model3 <- lm(price ~ carat + color, data=diamonds)
#' multiplot(model1, model2, model3)
#' multiplot(model1, model2, model3, single=FALSE)
#' multiplot(model1, model2, model3, plot=FALSE)
#' require(reshape2)
#' data(tips, package="reshape2")
#' mod1 <- lm(tip ~ total_bill + sex, data=tips)
#' mod2 <- lm(tip ~ total_bill * sex, data=tips)
#' mod3 <- lm(tip ~ total_bill * sex * day, data=tips)
#' mod7 <- lm(tip ~ total_bill + day + time, data=tips)
#' multiplot(mod1, mod2, mod3, mod7, single=FALSE, scales="free_x")
#' multiplot(mod1, mod2, mod3, mod7, single=FALSE, scales="free_x")
#' multiplot(mod1, mod2, mod3, mod7, single=FALSE, scales="free_x", plot.shapes=TRUE)
#' multiplot(mod1, mod2, mod3, mod7, single=TRUE, scales="free_x", 
#' plot.shapes=TRUE, plot.linetypes=TRUE)
#' multiplot(mod1, mod2, mod3, mod7, single=TRUE, scales="free_x", 
#' plot.shapes=FALSE, plot.linetypes=TRUE, legend.position="bottom")
#' # the secret weapon
#' multiplot(mod1, mod2, mod3, mod7, coefficients="total_bill", secret.weapon=TRUE)
#' # horizontal secret weapon
#' multiplot(mod1, mod2, mod3, mod7, coefficients="total_bill", by="Model", horizontal=FALSE)
multiplot <- function(..., 
                      title="Coefficient Plot", xlab="Value", ylab="Coefficient", 
                      innerCI=1, outerCI=2, 
                      lwdOuter=(Sys.info()["sysname"] != 'Windows')*0.5, 
                      pointSize=3, dodgeHeight=1,  
                      color="blue", shape=16, linetype=1,
                      cex=.8, textAngle=0, numberAngle=90,
                      zeroColor="grey", zeroLWD=1, zeroType=2,
                      scales="fixed", ncol=length(unique(modelCI$Model)),
                      sort=c("natural", "normal", "magnitude", "size", "alphabetical"), decreasing=FALSE, names=NULL,
                      numeric=FALSE, fillColor="grey", alpha=1/2,
                      horizontal=FALSE, factors=NULL, only=NULL, shorten=TRUE,
                      intercept=TRUE, interceptName="(Intercept)", 
                      coefficients=NULL, predictors=NULL, strict=FALSE, newNames=NULL, plot=TRUE, drop=FALSE,
                      by=c("Coefficient", "Model"), plot.shapes=FALSE, plot.linetypes=FALSE,
                      legend.position=c("bottom", "right", "left", "top", "none"),
                      secret.weapon=FALSE, legend.reverse=FALSE, trans=identity
    ## if ... is already a list just grab the dots, otherwise force it into a list
    if(tryCatch(is.list(...), error = function(e) FALSE))
        # grab the models
        theDots <- list(...)[[1]]
        # since theDots came in as a list it might have names, if so, leave them, if not, assign them names
            names(theDots) <- sprintf("Model%s", 1:length(theDots))
        # grab the models
        theDots <- list(...)
    # get the inputs, anything in the dots is blank or ""
    theArgs <- unlist(structure(as.list(match.call()[-1]), class = "uneval"))
    # if names(theArgs) is null, only dots were passed, treat them all as model
    # otherwise find args that are "" and treat them as model
    #print(theArgs[names(theArgs) == ""])
        # if names(theArgs) is null, only dots were passed, treat them all as model
        theNames <- theArgs
        theNames <- theArgs[names(theArgs) == ""]
    # if theDots doesn't already have names apply what we just created
        names(theDots) <- theNames
    # get variables that have multiple options
    sort <- match.arg(sort)
    by <- match.arg(by)
    legend.position <- match.arg(legend.position)
        by <- "Model"
        horizontal <- TRUE
    if(by == "Model" & length(coefficients) != 1)
        stop("If plotting the model along the axis then exactly one coefficient must be specified for plotting")
#    return(theDots)
    # need to change getModelInfo and buildModelCI and coefplot.lm so that shorten, factors and only are normal arguments and not part of ..., that way it will work better for this
    # get the modelCI for each model and make one big data.frame
    modelCI <- ldply(theDots, .fun=buildModelCI, outerCI=outerCI, innerCI=innerCI, intercept=intercept, numeric=numeric, 
                     sort=sort, decreasing=decreasing, factors=factors, shorten=shorten, coefficients=coefficients,
                     predictors=predictors, strict=strict, newNames=newNames, trans=trans)
    # Turn the Call into a unique identifier for each model
    #modelCI$Model <- as.factor(as.numeric(factor(modelCI$Model, levels=unique(modelCI$Model))))
    modelCI$Model <- modelCI$.id
    modelCI$.id <- NULL
    # if names are provided use those instead of the numbers
        names(names) <- theNames
        modelCI$Model <- names[modelCI$Model]
        #modNames <- structure(as.list(match.call()[-1]), class = "uneval")
#     ## if we are not plotting return modelCI right away
#     if(!plot)
#     {
#         return(modelCI)
#     }
    ## if drop is true get rid of models without valid coefficients
        notNA <- daply(modelCI, .variables="Model", function(x) { !all(is.na(x$Coef)) })
        #return(which(notNA == TRUE))
        modelCI <- modelCI[modelCI$Model %in% names(which(notNA == TRUE)), ]

    legendLabels <- if(legend.reverse){ rev(unique(modelCI$Model)) } else{ unique(modelCI$Model) }

    p <- buildPlotting.default(modelCI=modelCI, 
                        #modelMeltInner=modelMeltInner, modelMeltOuter=modelMeltOuter,
                       title=title, xlab=xlab, ylab=ylab,
                       lwdInner=lwdInner, lwdOuter=lwdOuter, pointSize=pointSize, dodgeHeight=dodgeHeight, 
                        color=color, shape=shape, linetype=linetype, cex=cex, textAngle=textAngle, 
                       numberAngle=numberAngle, zeroColor=zeroColor, zeroLWD=zeroLWD, 
                               outerCI=outerCI, innerCI=innerCI,# single=single,
                       zeroType=zeroType, numeric=numeric, fillColor=fillColor, alpha=alpha, multi=TRUE,
                               value="Value", coefficient=by,
                       horizontal=horizontal, facet=FALSE, scales="fixed")
    theColorScale <- list("Coefficient"=scale_colour_discrete("Model", breaks=legendLabels), 
                          "Model"=scale_color_manual(values=rep(color, length(unique(modelCI$Model))), guide=FALSE))
    theShapeScale <- list("NoShapes"=scale_shape_manual(values=rep(shape, length(unique(modelCI$Model))), guide=FALSE),
    theLinetypeScale <- list("NoShapes"=scale_linetype_manual(values=rep(linetype, length(unique(modelCI$Model))), guide=FALSE),
#     print(rep(linetype, length(unique(modelCI$Model))))
    p + theColorScale[[by]] + 
        theShapeScale[[plot.shapes+1]] + 
        theLinetypeScale[[plot.linetypes+1]] + 
        theme(legend.position=legend.position) + 
        if(!single) facet_wrap(~Model, scales=scales, ncol=ncol)

Try the coefplot package in your browser

Any scripts or data that you put into this service are public.

coefplot documentation built on Jan. 16, 2021, 5:09 p.m.