Malignant Glioma Pilot Study
Description
A nonrandomized pilot study on malignant glioma patients with pretargeted adjuvant radioimmunotherapy using yttrium90biotin.
Usage
1  glioma

Format
A data frame with 37 observations on 7 variables.
no.

patient number.
age

patient age (years).
sex

a factor with levels
"F"
(Female) and"M"
(Male). histology

a factor with levels
"GBM"
(grade IV) and"Grade3"
(grade III). group

a factor with levels
"Control"
and"RIT"
. event

status indicator for
time
:FALSE
for censored observations andTRUE
otherwise. time

survival time (months).
Details
The primary endpoint of this small pilot study is survival. Since the survival times are tied, the classical asymptotic logrank test may be inadequate in this setup. Therefore, a permutation test using Monte Carlo resampling was computed in the original paper. The data are taken from Tables 1 and 2 of Grana et al. (2002).
Source
Grana, C., Chinol, M., Robertson, C., Mazzetta, C., Bartolomei, M., De Cicco, C., Fiorenza, M., Gatti, M., Caliceti, P. and Paganelli, G. (2002). Pretargeted adjuvant radioimmunotherapy with Yttrium90biotin in malignant glioma patients: A pilot study. British Journal of Cancer 86(2), 207–212.
Examples
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  ## Grade III glioma
g3 < subset(glioma, histology == "Grade3")
## Plot KaplanMeier estimates
op < par(no.readonly = TRUE) # save current settings
layout(matrix(1:2, ncol = 2))
plot(survfit(Surv(time, event) ~ group, data = g3),
main = "Grade III Glioma", lty = 2:1,
ylab = "Probability", xlab = "Survival Time in Month",
xlim = c(2, 72))
legend("bottomleft", lty = 2:1, c("Control", "Treated"), bty = "n")
## Exact logrank test
logrank_test(Surv(time, event) ~ group, data = g3,
distribution = "exact")
## Grade IV glioma
gbm < subset(glioma, histology == "GBM")
## Plot KaplanMeier estimates
plot(survfit(Surv(time, event) ~ group, data = gbm),
main = "Grade IV Glioma", lty = 2:1,
ylab = "Probability", xlab = "Survival Time in Month",
xlim = c(2, 72))
legend("topright", lty = 2:1, c("Control", "Treated"), bty = "n")
par(op) # reset
## Exact logrank test
logrank_test(Surv(time, event) ~ group, data = gbm,
distribution = "exact")
## Stratified approximative (Monte Carlo) logrank test
logrank_test(Surv(time, event) ~ group  histology, data = glioma,
distribution = approximate(B = 10000))
