collinear: Automated Multicollinearity Management

Effortless multicollinearity management in data frames with both numeric and categorical variables for statistical and machine learning applications. The package simplifies multicollinearity analysis by combining four robust methods: 1) target encoding for categorical variables (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); 2) automated feature prioritization to prevent key variable loss during filtering; 3) pairwise correlation for all variable combinations (numeric-numeric, numeric-categorical, categorical-categorical); and 4) fast computation of variance inflation factors.

Package details

AuthorBlas M. Benito [aut, cre, cph] (<https://orcid.org/0000-0001-5105-7232>)
MaintainerBlas M. Benito <blasbenito@gmail.com>
LicenseMIT + file LICENSE
Version2.0.0
URL https://blasbenito.github.io/collinear/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("collinear")

Try the collinear package in your browser

Any scripts or data that you put into this service are public.

collinear documentation built on April 12, 2025, 1:36 a.m.