Provides a comprehensive and automated workflow for managing multicollinearity in data frames with numeric and/or categorical variables. The package integrates five robust methods into a single function: (1) target encoding of categorical variables based on response values (Micci-Barreca, 2001 (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); (2) automated feature prioritization to preserve key predictors during filtering; (3 and 4) pairwise correlation and VIF filtering across all variable types (numeric–numeric, numeric–categorical, and categorical–categorical); (5) adaptive correlation and VIF thresholds. Together, these methods enable a reliable multicollinearity management in most use cases while maintaining model integrity. The package also supports parallel processing and progress tracking via the packages 'future' and 'progressr', and provides seamless integration with the 'tidymodels' ecosystem through a dedicated recipe step.
Package details |
|
|---|---|
| Author | Blas M. Benito [aut, cre, cph] (ORCID: <https://orcid.org/0000-0001-5105-7232>) |
| Maintainer | Blas M. Benito <blasbenito@gmail.com> |
| License | MIT + file LICENSE |
| Version | 3.0.0 |
| URL | https://blasbenito.github.io/collinear/ |
| Package repository | View on CRAN |
| Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.