f_r2_counts | R Documentation |
These functions take a data frame with a integer counts response "y", and a continuous predictor "x", fit a univariate model, and return the R-squared of observations versus predictions:
f_r2_glm_poisson()
Pearson's R-squared between a count response and the predictions of a GLM model with formula y ~ x
and family stats::poisson(link = "log")
.
f_r2_glm_poisson_poly2()
Pearson's R-squared between a count response and the predictions of a GLM model with formula y ~ stats::poly(x, degree = 2, raw = TRUE)
and family stats::poisson(link = "log")
.
f_r2_gam_poisson()
Pearson's R-squared between a count response and the predictions of a mgcv::gam()
model with formula y ~ s(x)
and family stats::poisson(link = "log")
.
f_r2_rpart()
: Pearson's R-squared of a Recursive Partition Tree fitted with rpart::rpart()
with formula y ~ x
.
f_r2_rf()
: Pearson's R-squared of a 100 trees Random Forest model fitted with ranger::ranger()
and formula y ~ x
.
f_r2_glm_poisson(df)
f_r2_glm_poisson_poly2(df)
f_r2_gam_poisson(df)
df |
(required, data frame) with columns:
|
Other preference_order_functions:
f_auc
,
f_r2
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2
,
f_v()
,
f_v_rf_categorical()
#load example data
data(vi)
#reduce size to speed-up example
vi <- vi[1:1000, ]
#integer counts response and continuous predictor
#to data frame without NAs
df <- data.frame(
y = vi[["vi_counts"]],
x = vi[["swi_max"]]
) |>
na.omit()
#GLM model with Poisson family
f_r2_glm_poisson(df = df)
#GLM model with second degree polynomials and Poisson family
f_r2_glm_poisson_poly2(df = df)
#GAM model with Poisson family
f_r2_gam_poisson(df = df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.