validate_data_cor | R Documentation |
Internal function to assess whether the input arguments df
and predictors
result in data dimensions suitable for pairwise correlation analysis.
If the number of rows in df
is smaller than 10, an error is issued.
validate_data_cor(
df = NULL,
predictors = NULL,
function_name = "collinear::validate_data_cor()",
quiet = FALSE
)
df |
(required; data frame, tibble, or sf) A data frame with responses and predictors. Default: NULL. |
predictors |
(optional; character vector) Names of the predictors to select from |
function_name |
(optional, character string) Name of the function performing the check. Default: "collinear::validate_data_cor()" |
quiet |
(optional; logical) If FALSE, messages generated during the execution of the function are printed to the console Default: FALSE |
character vector: predictors names
Other data_validation:
validate_data_vif()
,
validate_df()
,
validate_encoding_arguments()
,
validate_predictors()
,
validate_preference_order()
,
validate_response()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.