f_r2 | R Documentation |
These functions take a data frame with two numeric continuous columns "x" (predictor) and "y" (response), fit a univariate model, and return the R-squared of the observations versus the model predictions:
f_r2_pearson()
: Pearson's R-squared.
f_r2_spearman()
: Spearman's R-squared.
f_r2_glm_gaussian()
: Pearson's R-squared of a GLM model fitted with stats::glm()
, with formula y ~ s(x)
and family stats::gaussian(link = "identity")
.
f_r2_glm_gaussian_poly2()
: Pearson's R-squared of a GLM model fitted with stats::glm()
, with formula y ~ stats::poly(x, degree = 2, raw = TRUE)
and family stats::gaussian(link = "identity")
.
f_r2_gam_gaussian()
: Pearson's R-squared of a GAM model fitted with mgcv::gam()
, with formula y ~ s(x)
and family stats::gaussian(link = "identity")
.
f_r2_rpart()
: Pearson's R-squared of a Recursive Partition Tree fitted with rpart::rpart()
with formula y ~ x
.
f_r2_rf()
: Pearson's R-squared of a 100 trees Random Forest model fitted with ranger::ranger()
and formula y ~ x
.
f_r2_pearson(df)
f_r2_spearman(df)
f_r2_glm_gaussian(df)
f_r2_glm_gaussian_poly2(df)
f_r2_gam_gaussian(df)
f_r2_rpart(df)
f_r2_rf(df)
df |
(required, data frame) with columns:
|
numeric: R-squared
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_auc
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
data(vi)
#reduce size to speed-up example
vi <- vi[1:1000, ]
#numeric response and predictor
#to data frame without NAs
df <- data.frame(
y = vi[["vi_numeric"]],
x = vi[["swi_max"]]
) |>
na.omit()
# Continuous response
#Pearson R-squared
f_r2_pearson(df = df)
#Spearman R-squared
f_r2_spearman(df = df)
#R-squared of a gaussian gam
f_r2_glm_gaussian(df = df)
#gaussian glm with second-degree polynomials
f_r2_glm_gaussian_poly2(df = df)
#R-squared of a gaussian gam
f_r2_gam_gaussian(df = df)
#recursive partition tree
f_r2_rpart(df = df)
#random forest model
f_r2_rf(df = df)
#load example data
data(vi)
#reduce size to speed-up example
vi <- vi[1:1000, ]
#continuous response and predictor
#to data frame without NAs
df <- data.frame(
y = vi[["vi_numeric"]],
x = vi[["swi_max"]]
) |>
na.omit()
# Continuous response
#Pearson R-squared
f_r2_pearson(df = df)
#Spearman R-squared
f_r2_spearman(df = df)
#R-squared of a gaussian gam
f_r2_glm_gaussian(df = df)
#gaussian glm with second-degree polynomials
f_r2_glm_gaussian_poly2(df = df)
#R-squared of a gaussian gam
f_r2_gam_gaussian(df = df)
#recursive partition tree
f_r2_rpart(df = df)
#random forest model
f_r2_rf(df = df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.