View source: R/preference_order_methods.R
| f_v_rf_categorical | R Documentation | 
Computes the Cramer's V between a categorical response (of class "character" or "factor") and the prediction of a Random Forest model with a categorical or numeric predictor and weighted cases.
f_v_rf_categorical(df)
df | 
 (required, data frame) with columns: 
  | 
numeric: Cramer's V
Other preference_order_functions: 
f_auc,
f_r2,
f_r2_counts,
f_v()
#load example data
data(vi)
#reduce size to speed-up example
vi <- vi[1:1000, ]
#categorical response and predictor
#to data frame without NAs
df <- data.frame(
  y = vi[["vi_factor"]],
  x = vi[["soil_type"]]
) |>
  na.omit()
#Cramer's V of a Random Forest model
f_v_rf_categorical(df = df)
#categorical response and numeric predictor
df <- data.frame(
  y = vi[["vi_factor"]],
  x = vi[["swi_mean"]]
) |>
  na.omit()
f_v_rf_categorical(df = df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.