add_white_noise | Add White Noise to Encoded Predictor |
case_weights | Case Weights for Unbalanced Binomial or Categorical Responses |
collinear | Automated multicollinearity management |
collinear-package | collinear |
cor_clusters | Hierarchical Clustering from a Pairwise Correlation Matrix |
cor_cramer_v | Bias Corrected Cramer's V |
cor_df | Pairwise Correlation Data Frame |
cor_matrix | Pairwise Correlation Matrix |
cor_select | Automated Multicollinearity Filtering with Pairwise... |
drop_geometry_column | Removes geometry column in sf data frames |
encoded_predictor_name | Name of Target-Encoded Predictor |
f_auc | Association Between a Binomial Response and a Continuous... |
f_auto | Select Function to Compute Preference Order |
f_auto_rules | Rules to Select Default f Argument to Compute Preference... |
f_functions | Data Frame of Preference Functions |
f_r2 | Association Between a Continuous Response and a Continuous... |
f_r2_counts | Association Between a Count Response and a Continuous... |
f_v | Association Between a Categorical Response and a Categorical... |
f_v_rf_categorical | Association Between a Categorical Response and a Categorical... |
identify_predictors | Identify Numeric and Categorical Predictors |
identify_predictors_categorical | Identify Valid Categorical Predictors |
identify_predictors_numeric | Identify Valid Numeric Predictors |
identify_predictors_type | Identify Predictor Types |
identify_predictors_zero_variance | Identify Zero and Near-Zero Variance Predictors |
identify_response_type | Identify Response Type |
model_formula | Generate Model Formulas |
performance_score_auc | Area Under the Curve of Binomial Observations vs... |
performance_score_r2 | Pearson's R-squared of Observations vs Predictions |
performance_score_v | Cramer's V of Observations vs Predictions |
preference_order | Quantitative Variable Prioritization for Multicollinearity... |
preference_order_collinear | Preference Order Argument in collinear() |
target_encoding_lab | Target Encoding Lab: Transform Categorical Variables to... |
target_encoding_methods | Target Encoding Methods |
toy | One response and four predictors with varying levels of... |
validate_data_cor | Validate Data for Correlation Analysis |
validate_data_vif | Validate Data for VIF Analysis |
validate_df | Validate Argument df |
validate_encoding_arguments | Validates Arguments of 'target_encoding_lab()' |
validate_predictors | Validate Argument predictors |
validate_preference_order | Validate Argument preference_order |
validate_response | Validate Argument response |
vi | Example Data With Different Response and Predictor Types |
vif_df | Variance Inflation Factor |
vif_select | Automated Multicollinearity Filtering with Variance Inflation... |
vi_predictors | All Predictor Names in Example Data Frame vi |
vi_predictors_categorical | All Categorical and Factor Predictor Names in Example Data... |
vi_predictors_numeric | All Numeric Predictor Names in Example Data Frame vi |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.