Man pages for collinear
Automated Multicollinearity Management

add_white_noiseAdd White Noise to Encoded Predictor
case_weightsCase Weights for Unbalanced Binomial or Categorical Responses
collinearAutomated multicollinearity management
collinear-packagecollinear
cor_clustersHierarchical Clustering from a Pairwise Correlation Matrix
cor_cramer_vBias Corrected Cramer's V
cor_dfPairwise Correlation Data Frame
cor_matrixPairwise Correlation Matrix
cor_selectAutomated Multicollinearity Filtering with Pairwise...
drop_geometry_columnRemoves geometry column in sf data frames
encoded_predictor_nameName of Target-Encoded Predictor
f_aucAssociation Between a Binomial Response and a Continuous...
f_autoSelect Function to Compute Preference Order
f_auto_rulesRules to Select Default f Argument to Compute Preference...
f_functionsData Frame of Preference Functions
f_r2Association Between a Continuous Response and a Continuous...
f_r2_countsAssociation Between a Count Response and a Continuous...
f_vAssociation Between a Categorical Response and a Categorical...
f_v_rf_categoricalAssociation Between a Categorical Response and a Categorical...
identify_predictorsIdentify Numeric and Categorical Predictors
identify_predictors_categoricalIdentify Valid Categorical Predictors
identify_predictors_numericIdentify Valid Numeric Predictors
identify_predictors_typeIdentify Predictor Types
identify_predictors_zero_varianceIdentify Zero and Near-Zero Variance Predictors
identify_response_typeIdentify Response Type
model_formulaGenerate Model Formulas
performance_score_aucArea Under the Curve of Binomial Observations vs...
performance_score_r2Pearson's R-squared of Observations vs Predictions
performance_score_vCramer's V of Observations vs Predictions
preference_orderQuantitative Variable Prioritization for Multicollinearity...
preference_order_collinearPreference Order Argument in collinear()
target_encoding_labTarget Encoding Lab: Transform Categorical Variables to...
target_encoding_methodsTarget Encoding Methods
toyOne response and four predictors with varying levels of...
validate_data_corValidate Data for Correlation Analysis
validate_data_vifValidate Data for VIF Analysis
validate_dfValidate Argument df
validate_encoding_argumentsValidates Arguments of 'target_encoding_lab()'
validate_predictorsValidate Argument predictors
validate_preference_orderValidate Argument preference_order
validate_responseValidate Argument response
viExample Data With Different Response and Predictor Types
vif_dfVariance Inflation Factor
vif_selectAutomated Multicollinearity Filtering with Variance Inflation...
vi_predictorsAll Predictor Names in Example Data Frame vi
vi_predictors_categoricalAll Categorical and Factor Predictor Names in Example Data...
vi_predictors_numericAll Numeric Predictor Names in Example Data Frame vi
collinear documentation built on April 12, 2025, 1:36 a.m.