Nothing
#' Covariance measure tests with formula interface
#'
#' @details
#' Formula-based interface for the generalised and projected covariance measure
#' tests.
#'
#' @references
#' Kook, L. & Lundborg A. R. (2024). Algorithm-agnostic significance testing in
#' supervised learning with multimodal data. Briefings in Bioinformatics,
#' 25(6), 2024. \doi{10.1093/bib/bbae475}
#'
#' @param formula Formula of the form \code{Y ~ X | Z} for testing Y independent
#' of X given Z.
#' @param data Data.frame containing the variables in \code{formula}.
#' @param test Character string; \code{"gcm"}, \code{"pcm"}, or \code{"wgcm"}.
#' @param ... Additional arguments passed to \code{test}.
#'
#' @return Object of class \code{"gcm"}, \code{"wgcm"} or \code{"pcm"} and
#' \code{"htest"}. See \code{\link{gcm}} and \code{\link{pcm}} for details.
#'
#' @examples
#' tn <- 1e2
#' df <- data.frame(y = rnorm(tn), x1 = rnorm(tn), x2 = rnorm(tn), z = rnorm(tn))
#' comet(y ~ x1 + x2 | z, data = df, test = "gcm")
#'
#' @export
comet <- function(formula, data, test = c("gcm", "pcm", "wgcm"), ...) {
fm <- Formula::as.Formula(formula)
Y <- stats::model.response(stats::model.frame(fm, data))
X <- .rm_int(stats::model.matrix(fm, data, rhs = 1))
Z <- .rm_int(stats::model.matrix(fm, data, rhs = 2))
tst <- do.call(match.arg(test), c(list(Y = Y, X = X, Z = Z), list(...)))
tst$data.name <- paste0(deparse(match.call()), collapse = "\n")
tst
}
#' @rdname comet
#' @export
comets <- comet
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.