Nothing
#######################################
# #
# Berechnung der Kovarianzmatrix #
# ch: 22-02-2010 #
# #
######################################
# 2023-11-20 A. Papritz subsitution of function
# CovarianceFct{RandomsFields} by f.CorrelationFct
# 2023-12-10 AP correction of error for nugget model occurring with scale = 0
f.covmat.support <- function(model, locations)
### purpose: calculate the the n X n support covarianzmatrix
### arguments:
### model= list with the covarianz parameter,
### 1. element = coords of the center of the lower left pixel
### locations = Koordinaten der St?tzpunkte (1D Vektor oder n X
### , oder n X 3 Matrix
###
### output: n X n Kovarianzmatrix der Distanzen
{
t.distmat <- f.row.dist( locations, locations )
t.part.covmat.list <- lapply(
model,
function(x, t.distmat){
if(x$model == "mev"){
x$model = "nugget"
}
# # using function CovarianceFct{RandomsFields}
#
# t.part.covmat <- x$variance * CovarianceFct(
# x = c( t.distmat ),
# model = x$model,
# param = c(mean = NA,
# variance = 1,
# nugget = 0,
# scale = x$scale,
# parameter = x$parameter)
# )
# using substitute function f.CorrelationFct
t.part.covmat <- x$variance * f.CorrelationFct(
x = c( t.distmat ),
scale = x$scale,
model = x$model,
param = x$parameter
)
# cat("\n\n", x$model, " parameter", x$parameter,"\n")
# print(range(t.part.covmat.new - t.part.covmat))
dim( t.part.covmat ) <- dim( t.distmat )
return( t.part.covmat )
}
, t.distmat
)
t.covmat.support <- matrix(
rowSums( matrix(
unlist(t.part.covmat.list),
ncol = length(t.part.covmat.list) )),
ncol = dim(t.part.covmat.list[[1]])[2]
)
rm(t.distmat)
return(t.covmat.support)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.