Nothing
#' @export
BootstrapTSPolicy <- R6::R6Class(
portable = FALSE,
class = FALSE,
inherit = Policy,
public = list(
J = NULL,
a = NULL,
b = NULL,
class_name = "BootstrapTSPolicy",
initialize = function(J = 100,
a = 1,
b = 1) {
super$initialize()
self$J <- J
self$a <- a
self$b <- b
},
set_parameters = function(context_params) {
self$theta_to_arms <- list('alpha' = rep(self$a,self$J),
'beta' = rep(self$b,self$J))
},
get_action = function(t, context) {
point_estimate_of_mean <- vector("double", context$k)
replicate_per_arm <- sample(self$J, context$k, replace = TRUE)
for (arm in 1:context$k) {
one_replicate <- replicate_per_arm[arm]
r_alpha <- self$theta$alpha[[arm]][one_replicate]
r_beta <- self$theta$beta[[arm]][one_replicate]
point_estimate_of_mean[arm] <- r_alpha / (r_alpha + r_beta)
}
action$choice <- which_max_tied(point_estimate_of_mean)
action
},
set_reward = function(t, context, action, reward) {
arm <- action$choice
reward <- reward$reward
# double_or_nothing_bootstrap
# sample_indices <- rbinom(self$J, 1, .5) == 1
sample_indices <- sample(c(FALSE,TRUE), replace=TRUE, size=self$J)
some_replicates <- which(sample_indices, FALSE, FALSE)
self$theta$alpha[[arm]][some_replicates] <- self$theta$alpha[[arm]][some_replicates] + reward
self$theta$beta[[arm]][some_replicates] <- self$theta$beta[[arm]][some_replicates] + 1 - reward
self$theta
}
)
)
#' Policy: Thompson sampling with the online bootstrap
#'
#' Bootstrap Thompson Sampling
#'
#' Bootstrap Thompson Sampling (BTS) is a heuristic method
#' for solving bandit problems which modifies Thompson Sampling
#' (see \link{ThompsonSamplingPolicy}) by replacing the posterior distribution
#' used in Thompson sampling by a bootstrap distribution.
#'
#' @name BootstrapTSPolicy
#'
#' @section Usage:
#' \preformatted{
#' policy <- BootstrapTSPolicy(J = 100, a= 1, b = 1)
#' }
#'
#' @section Arguments:
#'
#' \describe{
#' \item{\code{new(J = 100, a= 1, b = 1)}}{ Generates a new \code{BootstrapTSPolicy} object.
#' Arguments are defined in the Argument section above.}
#' }
#'
#' \describe{
#' \item{\code{set_parameters()}}{each policy needs to assign the parameters it wants to keep track of
#' to list \code{self$theta_to_arms} that has to be defined in \code{set_parameters()}'s body.
#' The parameters defined here can later be accessed by arm index in the following way:
#' \code{theta[[index_of_arm]]$parameter_name}
#' }
#' }
#'
#' \describe{
#' \item{\code{get_action(context)}}{
#' here, a policy decides which arm to choose, based on the current values
#' of its parameters and, potentially, the current context.
#' }
#' }
#'
#' \describe{
#' \item{\code{set_reward(reward, context)}}{
#' in \code{set_reward(reward, context)}, a policy updates its parameter values
#' based on the reward received, and, potentially, the current context.
#' }
#' }
#'
#' @references
#'
#' Eckles, D., & Kaptein, M. (2014). Thompson sampling with the online bootstrap.
#' arXiv preprint arXiv:1410.4009.
#'
#' Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in
#' view of the evidence of two samples. Biometrika, 25(3/4), 285-294.
#'
#' @seealso
#'
#' Core contextual classes: \code{\link{Bandit}}, \code{\link{Policy}}, \code{\link{Simulator}},
#' \code{\link{Agent}}, \code{\link{History}}, \code{\link{Plot}}
#'
#' Bandit subclass examples: \code{\link{BasicBernoulliBandit}}, \code{\link{ContextualLogitBandit}},
#' \code{\link{OfflineReplayEvaluatorBandit}}
#'
#' Policy subclass examples: \code{\link{EpsilonGreedyPolicy}}, \code{\link{ContextualLinTSPolicy}}
#'
#' @section Usage:
#' \preformatted{
#' policy <- BootstrapTSPolicy(1000)
#' }
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.