Nothing
#' @title Arcsine confidence interval
#' @description The Arcsine confidence interval for the binomial probability
#' (with Anscombe variance stabilizing transformation)
#' Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"
#' @references Anscombe FJ (1948) The transformation of Poisson, binomial and
#' negative binomial data. Biometrika; 35:246-254
#'
#' @param X the number of successes
#' @param n the total number of observations
#' @param alpha the nominal level, e.g. 0.05 for 95% CIs
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
#' @examples
#' Arcsine_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
#' Arcsine_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
#' Arcsine_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
#' with(singh_2010["4th", ], Arcsine_CI_1x2(X, n)) # alternative syntax
#' Arcsine_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
#' @export
Arcsine_CI_1x2 <- function(X, n, alpha = 0.05) {
validateArguments(mget(ls()))
# Estimate of the binomial probability (pihat)
estimate <- X / n
# Anscombe variance stabilizing transformation
ptilde <- (X + 3 / 8) / (n + 3 / 4)
# The upper alpha/2 percentile of the standard normal distribution
z <- qnorm(1 - alpha / 2, 0, 1)
# Calculate the confidence limits
L <- sin(asin(sqrt(ptilde)) - z / (2 * sqrt(n)))^2
U <- sin(asin(sqrt(ptilde)) + z / (2 * sqrt(n)))^2
# Output
printresults <- function() {
cat_sprintf(
"The arcsine CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)",
estimate, 100 * (1 - alpha), L, U
)
}
return(
contingencytables_result(
list("lower" = L, "upper" = U, "estimate" = estimate),
printresults
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.