Nothing
#' @title The Independence-smoothed logit confidence interval for the odds ratio
#' @description The Independence-smoothed logit confidence interval for the odds ratio
#' @description Described in Chapter 4 "The 2x2 Table"
#' @param n the observed table (a 2x2 matrix)
#' @param alpha the nominal level, e.g. 0.05 for 95% CIs
#' @examples
#' Independence_smoothed_logit_CI_2x2(lampasona_2013)
#' Independence_smoothed_logit_CI_2x2(ritland_2007)
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
Independence_smoothed_logit_CI_2x2 <- function(n, alpha = 0.05) {
validateArguments(mget(ls()))
n1p <- n[1, 1] + n[1, 2]
n2p <- n[2, 1] + n[2, 2]
np1 <- n[1, 1] + n[2, 1]
np2 <- n[1, 2] + n[2, 2]
N <- sum(n)
# Estimate of the odds ratio (thetahat)
estimate <- n[1, 1] * n[2, 2] / (n[1, 2] * n[2, 1])
# Add c_ij = 2 * (n_i + *n_ + j / N ^ 2) to all cells
n11tilde <- n[1, 1] + 2 * n1p * np1 / (N^2)
n12tilde <- n[1, 2] + 2 * n1p * np2 / (N^2)
n21tilde <- n[2, 1] + 2 * n2p * np1 / (N^2)
n22tilde <- n[2, 2] + 2 * n2p * np2 / (N^2)
# Adjusted estimate of the odds ratio (thetahattilde)
estimate_adj <- n11tilde * n22tilde / (n12tilde * n21tilde)
# Standard error of the log of the adjusted estimate
SE <- sqrt(1 / n11tilde + 1 / n12tilde + 1 / n21tilde + 1 / n22tilde)
# The upper alpha / 2 percentile of the standard normal distribution
z <- qnorm(1 - alpha / 2, 0, 1)
# Calculate the confidence limits
L <- exp(log(estimate_adj) - z * SE)
U <- exp(log(estimate_adj) + z * SE)
return(contingencytables_result(
list("lower" = L, "upper" = U, "estimate" = estimate),
sprintf(
"The independence-smoothed logit CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)",
estimate, 100 * (1 - alpha), L, U
)
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.