Nothing
# function [L, U, estimate] = Wald_CI_1x2(X, n, alpha, printresults)
#' @title The Wald confidence interval for the binomial probability
#' @description Described in Chapter 2 "The 1x2 Table and the Binomial
#' Distribution"
#' @param X the number of successes
#' @param n the total number of observations
#' @param alpha the nominal level, e.g. 0.05 for 95% CIs
#' @importFrom stats qnorm
#' @examples
#' Wald_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
#' Wald_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
#' Wald_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
#' with(singh_2010["4th", ], Wald_CI_1x2(X, n)) # alternative syntax
#' Wald_CI_1x2(ligarden_2010["X"], ligarden_2010["n"]) # Ligarden et al. (2010)
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
Wald_CI_1x2 <- function(X, n, alpha = 0.05) {
validateArguments(mget(ls()))
# Estimate of the binomial probability (pihat)
estimate <- X / n
# The standard error of the estimate
SE <- sqrt(estimate * (1 - estimate) / n)
# The upper alpha/2 percentile of the standard normal distribution
z <- qnorm(1 - alpha / 2, 0, 1)
# Calculate the confidence limits
L <- estimate - z * SE
U <- estimate + z * SE
# Overshoot can happen: truncate the results
L <- max(0, L)
U <- min(U, 1)
printresults <- function() {
cat_sprintf(
"The Wald CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)",
estimate, 100 * (1 - alpha), L, U
)
}
res <- list(L, U, estimate)
names(res) <- c("lower", "upper", "estimate")
return(contingencytables_result(res, printresults))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.