Nothing
.computeRandomSelectionCoreCollection <- function(object) {
#get data
dm <- as.matrix(object$distanceMatrix)
preselected <- match(object$preselected, labels(object$distanceMatrix))-1
n <- object$n
seed <- object$seed;
return(computeRandomSelection(dm, n, preselected, seed))
}
.computeAdjustedSelectionCoreCollection <- function(object, groups) {
#compute adjusted group with correct method
dm <- as.matrix(object$distanceMatrix)
if(object$adjustedGroupMethod=="split") {
preselected <- match(object$preselected, labels(object$distanceMatrix))-1
return(computeAdjustedSelectionUsingSplitMethod(dm, groups, preselected))
} else if(object$adjustedGroupMethod=="recompute") {
adjustedSelected <- rownames(object$randomSelected[which(object$randomSelected[,"preselects"]==0),])
adjustedSelected <- c(adjustedSelected, object$preselected)
adjustedSelected <- match(adjustedSelected, labels(object$distanceMatrix))-1
return(computeAdjustedSelectionUsingRecomputeMethod(dm, adjustedSelected))
} else {
stop(paste0("unknown adjustedGroupMethod ",object$adjustedGroupMethod))
}
}
.computeCoreSelectionCoreCollection <- function(object) {
#cat(paste0(mem_used(),"\n"))
#cat("Compute core\n")
dm <- as.matrix(object$distanceMatrix)
rawGroups <- object$adjustedBasedGroups
for(groupName in names(rawGroups)) {
if(groupName %in% object$preselected) {
rawGroups[[groupName]] <- match(c(groupName), labels(object$distanceMatrix))-1
} else {
rawGroups[[groupName]] <- match(rawGroups[[groupName]], labels(object$distanceMatrix))-1
}
}
names(rawGroups) <- match(names(rawGroups), labels(object$distanceMatrix))-1
result <- computeCore(object$algorithm,object$coreSelectMethod,dm,rawGroups)
if(is.null(result)) {
stop(paste0("no result, possibly unknown coreSelectMethod ",object$coreSelectMethod))
}
#cat("Computed core\n")
#cat(paste0(mem_used(),"\n"))
return(as.numeric(result))
}
.computeMeasure <- function(object, method) {
if(!missing(method) && !is.null(method)) {
dm <- as.matrix(object$distanceMatrix)
c <- match(rownames(object$core), labels(object$distanceMatrix))-1
return(computeMeasure(method, dm, c))
} else {
return(paste0("couldn't compute measure for method",method))
}
}
.computeAlternativeCore <- function(object, n) {
if(!missing(n) && !is.null(n)) {
alternativeCore <- object$core
alternativeCore[[paste0("alternative.",n)]] <- NA
dm <- as.matrix(object$distanceMatrix)
groups <- object$adjustedBasedGroups
list <- labels(groups)
for(i in 1:length(list)) {
groupEntries <- unlist(groups[list[i]])
if(length(groupEntries)>n) {
#get core entry
coreEntry <- groupEntries[groupEntries %in% rownames(object$core)][[1]]
#remove main entry
groupEntries <- groupEntries[!(groupEntries %in% rownames(object$core))]
#compute distances
distances <- unlist(lapply(groupEntries, function(x) {return(dm[list[[i]],x])}))
#select nth from ordered entries
alternativeCore[[coreEntry,paste0("alternative.",n)]] <- groupEntries[order(distances)][n]
}
}
return(alternativeCore)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.