Nothing
cossonet.exp = function (x, y, wt, nbasis, basis.id, lambda0, lambda_theta, gamma, obj, type, nfold, kparam, one.std, scale)
{
n = length(y)
p = length(wt)
message("fit COSSO with n = ", n, "p =", ncol(x), "\n")
if (missing(nbasis) & missing(basis.id)) {
nbasis = max(40, ceiling(12 * n^(2/9)))
basis.id = sort(sample(1:n, nbasis))
}
if (missing(nbasis) & !missing(basis.id))
nbasis <- length(basis.id)
if (!missing(nbasis) & missing(basis.id))
basis.id <- sort(sample(1:n, nbasis))
nbasis = as.integer(nbasis)
K = make_anovaKernel(x, x, type = type, kparam, scale)
d = K$numK
message("kernel:", type, "and d =", d, "\n")
op <- par(no.readonly = TRUE)
on.exit(par(op))
par(mfrow = c(1,2))
# solve (theta) - 1st
sspline_cvfit = cv.sspline.subset(K, y, nbasis, basis.id, rep(1, p)/wt^2, lambda0, obj, type, nfold, kparam, one.std = one.std, show = TRUE)
# solve (b, c) - 1st
nng_fit = cv.nng.subset(sspline_cvfit, K, y, nbasis, basis.id, wt, sspline_cvfit$optlambda, lambda_theta, gamma, nfold, one.std = one.std, obj)
theta.new = rescale_theta(nng_fit$theta.new)
par(op)
# solve (theta) - 2nd
sspline_cvfit = cv.sspline.subset(K, y, nbasis, basis.id, rep(1, p) / wt^2, lambda0, obj, type, nfold, kparam, one.std = FALSE, show = FALSE)
out = list(data = list(x = x, y = y, basis.id = basis.id, wt = wt, kernel = type, kparam = kparam),
tune = list(lambda0 = lambda0, lambda_theta = lambda_theta, gamma = gamma),
c_step = sspline_cvfit,
theta_step = nng_fit,
family = obj$family)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.