rTransformer: Root Based Transformation

Description Usage Arguments Details Value Author(s) References Examples

View source: R/rTransformer.R

Description

Root based transformation.

Usage

1
rTransformer(mat, low = 1e-04, upp = 100)

Arguments

mat

G x n data matrix, where G is the number of genes and n is the number of subjects

low

lower bound for the model parameter

upp

upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root transformation

y_{gi}=\frac{x_{gi}^{(1/η)}}{(1/η)}

. The optimal value for the parameter η is to minimize the squared difference between the sample mean and the sample median of the pooled data y_{gi}, g=1, …, G, i=1, …, n, where G is the number of genes and n is the number of subjects.

Value

res.eta

An object returned by optimize function

eta

model parameter

mat2

transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")

res = rTransformer(mat = ex)

# estimated model parameter
print(res$eta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")

countTransformers documentation built on May 1, 2019, 7:59 p.m.