Nothing
## ---- echo=FALSE, fig.width=4, fig.height=4------------------------------
require(scatterplot3d)
rgb.pixels <- cbind(runif(100000), runif(100000), runif(100000))
scatterplot3d::scatterplot3d(rgb.pixels, color=rgb(rgb.pixels), pch = 20,
xlab="Red", ylab="Green", zlab="Blue")
scatterplot3d::scatterplot3d(rgb.pixels, color=rgb(rgb.pixels), pch = 20,
xlab="Red", ylab="Green", zlab="Blue", angle=-45)
## ---- echo=FALSE, fig.align='center'-------------------------------------
require(scatterplot3d)
lower <- c(0.7, 0.01, 0.7)
upper <- c(0.99, 0.3, 0.99)
idx <- which( (lower[1] <= rgb.pixels[ , 1] &
rgb.pixels[ , 1] <= upper[1]) &
(lower[2] <= rgb.pixels[ , 2] &
rgb.pixels[ , 2] <= upper[2]) &
(lower[3] <= rgb.pixels[ , 3] &
rgb.pixels[ , 3] <= upper[3]))
rectangle <- rgb.pixels[idx, ]
scatterplot3d::scatterplot3d(rectangle, color=rgb(rectangle),
xlim=c(0, 1), ylim=c(0, 1), zlim=c(0, 1),
xlab="Red", ylab="Green", zlab="Blue", pch=20)
## ---- echo=FALSE, fig.align='center'-------------------------------------
require(scatterplot3d)
center <- c(0.4, 0.7, 0.4)
radius <- 0.05
distances <- vector(length = nrow(rgb.pixels))
for (i in 1:nrow(rgb.pixels)) {
distances[i] <- sqrt(sum((rgb.pixels[i, ] - center)^2))
}
idx <- which(distances <= radius)
scatterplot3d::scatterplot3d(rgb.pixels[idx, ],
color=rgb(rgb.pixels[idx, ]),
xlim=c(0, 1), ylim=c(0, 1), zlim=c(0, 1),
xlab="Red", ylab="Green", zlab="Blue", pch=20)
## ---- echo=FALSE, fig.align='center'-------------------------------------
require(scatterplot3d)
radius <- 0.25
idx <- which(distances <= radius)
scatterplot3d::scatterplot3d(rgb.pixels[idx, ],
color=rgb(rgb.pixels[idx, ]),
xlim=c(0, 1), ylim=c(0, 1), zlim=c(0, 1),
xlab="Red", ylab="Green", zlab="Blue", pch=20)
## ---- echo=FALSE, fig.width=4, fig.height=4.5, fig.align="center"--------
require(scatterplot3d)
img <- jpeg::readJPEG("norway.jpg")
countcolors::plotArrayAsImage(img)
## ---- fig.width=7, fig.height=7, fig.align="center"----------------------
# Note we're using the `plotPixels` function from the related colordistance
# package
colordistance::plotPixels("norway.jpg", lower = NULL, upper = NULL, n = 5000)
## ---- fig.width=6, fig.height=6, fig.align="center", results=F, eval=F----
# # Find K-means clusters
# kmeans.clusters <- colordistance::getKMeanColors("norway.jpg", n = 3, plotting = FALSE)
# colordistance::extractClusters(kmeans.clusters)
#
## ------------------------------------------------------------------------
center.spherical <- c(0.24, 0.45, 0.24) # Center color for spherical range
lower.rectangular <- c(0.2, 0.35, 0.2) # Lower limit for each of the three color channels
upper.rectangular <- c(0.3, 0.55, 0.3) # Upper limit for each of the three color channels
## ------------------------------------------------------------------------
# Read the image into the R environment
norway <- jpeg::readJPEG("norway.jpg")
# Find all the pixels within a 10% radius
norway.spherical <- countcolors::sphericalRange(norway, center = center.spherical, radius = 0.1, color.pixels = FALSE, plotting = FALSE); names(norway.spherical)
norway.spherical$img.fraction
## ---- fig.align='center'-------------------------------------------------
countcolors::changePixelColor(norway, norway.spherical$pixel.idx, target.color="magenta")
## ---- fig.align='center'-------------------------------------------------
# Find all the pixels within a 17% radius
norway.spherical <- countcolors::sphericalRange(norway,
center = center.spherical, radius = 0.15,
color.pixels = FALSE, plotting = TRUE,
target.color = "magenta"); norway.spherical$img.fraction
## ---- fig.align='center'-------------------------------------------------
# Trying with our original color ranges
norway.rectangular <- countcolors::rectangularRange(norway,
upper = upper.rectangular, lower = lower.rectangular,
target.color = "yellow")
# Trying with our cooking show values
norway.rectangular <- countcolors::rectangularRange(norway,
upper = c(0.55, 0.75, 0.4), lower = c(0.1, 0.25, 0),
target.color = "yellow"); norway.rectangular$img.fraction
## ---- fig.align='center'-------------------------------------------------
# Using multiple colors
green.center <- c(0.24, 0.45, 0.24)
white.center <- c(1, 1, 1)
two.colors <- countcolors::countColors("norway.jpg", color.range="spherical",
center = c(green.center, white.center), radius = c(0.15, 0.1),
bg.lower=NULL, bg.upper=NULL, plotting = TRUE,
target.color=c("magenta", "cyan"))
# Note that the fraction of all colors COMBINED is provided - to get them
# separately, call the function multiple times
two.colors$pixel.fraction
## ---- fig.align='center'-------------------------------------------------
# Using multiple colors
green.center <- c(0.24, 0.45, 0.24)
bg.upper <- c(0.2, 0.2, 0.45)
bg.lower <- c(0, 0, 0)
bg.ignore <- countcolors::countColors("norway.jpg", color.range="spherical",
center = green.center, radius = 0.15,
bg.lower=bg.lower, bg.upper=bg.upper, plotting = TRUE)
# Nearly 60%, as opposed to 26%, because we're no longer counting the water
bg.ignore$pixel.fraction
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.