Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 8,
fig.height = 5
)
library(couplr)
library(dplyr)
library(ggplot2)
## -----------------------------------------------------------------------------
set.seed(42)
# Treatment group: younger, more educated, higher prior earnings
treatment <- tibble(
id = 1:200,
age = rnorm(200, mean = 35, sd = 8),
education = rnorm(200, mean = 14, sd = 2),
prior_earnings = rnorm(200, mean = 40000, sd = 12000),
employed = rbinom(200, 1, 0.7),
group = "treatment"
)
# Control group: older, less educated, lower prior earnings (selection bias)
control <- tibble(
id = 201:700,
age = rnorm(500, mean = 45, sd = 12),
education = rnorm(500, mean = 12, sd = 3),
prior_earnings = rnorm(500, mean = 32000, sd = 15000),
employed = rbinom(500, 1, 0.5),
group = "control"
)
# Combine for packages that expect single data frame
combined <- bind_rows(treatment, control) %>%
mutate(treated = as.integer(group == "treatment"))
cat("Treatment units:", nrow(treatment), "\n")
cat("Control units:", nrow(control), "\n")
# Baseline imbalance
vars <- c("age", "education", "prior_earnings", "employed")
for (v in vars) {
diff <- mean(treatment[[v]]) - mean(control[[v]])
pooled_sd <- sqrt((var(treatment[[v]]) + var(control[[v]])) / 2)
std_diff <- diff / pooled_sd
cat(sprintf("%s: std diff = %.3f\n", v, std_diff))
}
## ----eval = requireNamespace("MatchIt", quietly = TRUE)-----------------------
# if (requireNamespace("MatchIt", quietly = TRUE)) {
# library(MatchIt)
#
# # MatchIt: Propensity score matching (default)
# m_ps <- matchit(
# treated ~ age + education + prior_earnings + employed,
# data = combined,
# method = "nearest",
# distance = "glm" # Propensity score via logistic regression
# )
#
# cat("MatchIt (propensity score, nearest neighbor):\n")
# cat(" Matched pairs:", sum(m_ps$weights[combined$treated == 1] > 0), "\n")
#
# # Extract matched data
# matched_ps <- match.data(m_ps)
# }
## -----------------------------------------------------------------------------
# couplr: Direct covariate matching
result_couplr <- match_couples(
left = treatment,
right = control,
vars = c("age", "education", "prior_earnings", "employed"),
auto_scale = TRUE,
scale = "robust"
)
cat("\ncouplr (direct covariate matching):\n")
cat(" Matched pairs:", result_couplr$info$n_matched, "\n")
cat(" Mean distance:", round(mean(result_couplr$pairs$distance), 4), "\n")
## ----eval = requireNamespace("MatchIt", quietly = TRUE), fig.width=9, fig.height=5, fig.alt="Side-by-side comparison of covariate balance achieved by MatchIt and couplr, showing standardized mean differences for age, education, prior_earnings, and employed"----
# if (requireNamespace("MatchIt", quietly = TRUE)) {
# # MatchIt balance
# matched_treated_ps <- matched_ps %>% filter(treated == 1)
# matched_control_ps <- matched_ps %>% filter(treated == 0)
#
# matchit_balance <- tibble(
# variable = vars,
# std_diff = sapply(vars, function(v) {
# diff <- mean(matched_treated_ps[[v]]) - mean(matched_control_ps[[v]])
# pooled_sd <- sqrt((var(matched_treated_ps[[v]]) + var(matched_control_ps[[v]])) / 2)
# diff / pooled_sd
# }),
# method = "MatchIt"
# )
#
# # couplr balance
# couplr_balance <- balance_diagnostics(
# result_couplr, treatment, control, vars
# )
#
# couplr_balance_df <- couplr_balance$var_stats %>%
# select(variable, std_diff) %>%
# mutate(method = "couplr")
#
# # Combine and plot
# balance_comparison <- bind_rows(matchit_balance, couplr_balance_df)
#
# ggplot(balance_comparison, aes(x = variable, y = abs(std_diff), fill = method)) +
# geom_col(position = "dodge") +
# geom_hline(yintercept = 0.1, linetype = "dashed", color = "#93c54b") +
# geom_hline(yintercept = 0.25, linetype = "dashed", color = "#f47c3c") +
# labs(
# title = "Covariate Balance: MatchIt vs couplr",
# subtitle = "Green line = 0.1 (excellent), Orange line = 0.25 (acceptable)",
# x = "Variable",
# y = "|Standardized Difference|",
# fill = "Method"
# ) +
# scale_fill_manual(values = c("MatchIt" = "#29abe0", "couplr" = "#93c54b")) +
# theme_minimal() +
# theme(
# plot.background = element_rect(fill = "transparent", color = NA),
# panel.background = element_rect(fill = "transparent", color = NA),
# legend.position = "bottom"
# )
# }
## ----eval = requireNamespace("optmatch", quietly = TRUE)----------------------
# if (requireNamespace("optmatch", quietly = TRUE)) {
# library(optmatch)
#
# # Create distance matrix
# dist_mat <- match_on(
# treated ~ age + education + prior_earnings + employed,
# data = combined,
# method = "mahalanobis"
# )
#
# # Optimal pair matching
# m_opt <- pairmatch(dist_mat, data = combined)
#
# n_matched <- sum(!is.na(m_opt)) / 2
# cat("optmatch (optimal pair matching):\n")
# cat(" Matched pairs:", n_matched, "\n")
# }
## -----------------------------------------------------------------------------
# couplr with Mahalanobis-like scaling
result_couplr_maha <- match_couples(
left = treatment,
right = control,
vars = vars,
auto_scale = TRUE,
scale = "standardize" # Similar to Mahalanobis diagonal
)
cat("\ncouplr (optimal pair matching):\n")
cat(" Matched pairs:", result_couplr_maha$info$n_matched, "\n")
## ----eval = requireNamespace("optmatch", quietly = TRUE)----------------------
# if (requireNamespace("optmatch", quietly = TRUE)) {
# # Compare total distances
# # (Note: Direct comparison is complex due to different distance scaling)
# cat("\nBoth packages find globally optimal one-to-one assignments.\n")
# cat("Total distance differences arise from distance metric choices.\n")
# }
## ----eval = requireNamespace("designmatch", quietly = TRUE)-------------------
# if (requireNamespace("designmatch", quietly = TRUE)) {
# library(designmatch)
#
# # Prepare data for designmatch
# t_ind <- combined$treated
#
# # Distance matrix (Mahalanobis)
# X <- as.matrix(combined[, vars])
# dist_mat_dm <- distmat(t_ind, X)
#
# # Balance constraints: mean differences
# mom <- list(
# covs = X,
# tols = rep(0.1, ncol(X)) # Tolerance for standardized difference
# )
#
# # Solve with balance constraints
# tryCatch({
# m_dm <- bmatch(
# t_ind = t_ind,
# dist_mat = dist_mat_dm,
# mom = mom,
# solver = list(name = "glpk", approximate = 1)
# )
#
# cat("designmatch (balance-constrained matching):\n")
# cat(" Matched pairs:", sum(m_dm$t_id > 0), "\n")
# }, error = function(e) {
# cat("designmatch: Balance constraints may be infeasible\n")
# cat(" Try relaxing tolerances or reducing constraint count\n")
# })
# }
## -----------------------------------------------------------------------------
# couplr: Optimize distance, then check balance
result_couplr_dm <- match_couples(
left = treatment,
right = control,
vars = vars,
auto_scale = TRUE
# No caliper - let algorithm find optimal matches
)
balance_dm <- balance_diagnostics(result_couplr_dm, treatment, control, vars)
cat("\ncouplr (distance-minimizing):\n")
cat(" Matched pairs:", result_couplr_dm$info$n_matched, "\n")
cat(" Mean |std diff|:", round(balance_dm$overall$mean_abs_std_diff, 4), "\n")
cat(" Max |std diff|:", round(balance_dm$overall$max_abs_std_diff, 4), "\n")
## ----eval = requireNamespace("Matching", quietly = TRUE)----------------------
# if (requireNamespace("Matching", quietly = TRUE)) {
# library(Matching)
#
# # Genetic matching (finds optimal weights)
# X <- as.matrix(combined[, vars])
#
# set.seed(123)
# m_gen <- Match(
# Tr = combined$treated,
# X = X,
# M = 1, # 1:1 matching
# estimand = "ATT",
# replace = FALSE
# )
#
# cat("Matching package (multivariate matching):\n")
# cat(" Matched pairs:", length(m_gen$index.treated), "\n")
# }
## ----eval = requireNamespace("Matching", quietly = TRUE)----------------------
# if (requireNamespace("Matching", quietly = TRUE)) {
# # Check balance from Matching package
# mb <- MatchBalance(
# treated ~ age + education + prior_earnings + employed,
# data = combined,
# match.out = m_gen,
# nboots = 0
# )
# }
## ----eval = FALSE-------------------------------------------------------------
# # Stage 1: couplr for initial matching
# matched <- match_couples(
# left = treatment_data,
# right = control_data,
# vars = covariates,
# auto_scale = TRUE
# )
#
# # Stage 2: Check balance
# balance <- balance_diagnostics(matched, treatment_data, control_data, covariates)
#
# # Stage 3: If balance insufficient, consider alternatives
# if (balance$overall$max_abs_std_diff > 0.25) {
# # Try MatchIt with propensity scores
# library(MatchIt)
# combined <- bind_rows(treatment_data, control_data)
# m_ps <- matchit(treated ~ ., data = combined, method = "full")
# }
#
# # Stage 4: Analysis on matched data
# matched_data <- join_matched(matched, treatment_data, control_data)
# model <- lm(outcome ~ treatment, data = matched_data)
## ----lalonde-style------------------------------------------------------------
set.seed(1986)
# NSW treatment group (randomized) - smaller sample for CRAN
nsw_treat <- tibble(
id = 1:100,
age = pmax(17, rnorm(100, 25, 7)),
education = pmax(0, pmin(16, rnorm(100, 10, 2))),
black = rbinom(100, 1, 0.84),
hispanic = rbinom(100, 1, 0.06),
married = rbinom(100, 1, 0.19),
nodegree = rbinom(100, 1, 0.71),
re74 = pmax(0, rnorm(100, 2100, 5000)),
re75 = pmax(0, rnorm(100, 1500, 3500)),
group = "treatment"
)
# CPS comparison group (observational - very different!)
# Reduced from 15,815 to 500 for CRAN timing compliance
cps_control <- tibble(
id = 101:600,
age = pmax(17, rnorm(500, 33, 11)),
education = pmax(0, pmin(16, rnorm(500, 12, 3))),
black = rbinom(500, 1, 0.07),
hispanic = rbinom(500, 1, 0.07),
married = rbinom(500, 1, 0.71),
nodegree = rbinom(500, 1, 0.30),
re74 = pmax(0, rnorm(500, 14000, 9000)),
re75 = pmax(0, rnorm(500, 13500, 9000)),
group = "control"
)
cat("NSW treatment:", nrow(nsw_treat), "individuals\n")
cat("CPS control:", nrow(cps_control), "individuals\n")
cat("(Note: Real CPS has ~16,000 controls; reduced here for vignette timing)\n")
# Baseline imbalance is severe
vars_lalonde <- c("age", "education", "black", "hispanic", "married",
"nodegree", "re74", "re75")
cat("\nBaseline standardized differences:\n")
for (v in vars_lalonde) {
t_mean <- mean(nsw_treat[[v]])
c_mean <- mean(cps_control[[v]])
pooled_sd <- sqrt((var(nsw_treat[[v]]) + var(cps_control[[v]])) / 2)
std_diff <- (t_mean - c_mean) / pooled_sd
cat(sprintf(" %s: %.2f\n", v, std_diff))
}
## ----lalonde-matching---------------------------------------------------------
# Greedy matching (fast for large control pools)
result_lalonde <- greedy_couples(
left = nsw_treat,
right = cps_control,
vars = vars_lalonde,
strategy = "pq", # Priority queue - efficient for large pools
auto_scale = TRUE,
scale = "robust"
)
cat("Matched", result_lalonde$info$n_matched, "of", nrow(nsw_treat), "treatment units\n")
cat("Mean distance:", round(mean(result_lalonde$pairs$distance), 4), "\n")
## ----lalonde-balance, fig.width=9, fig.height=5, fig.alt="Balance plot for Lalonde-style matching showing improvement in standardized differences"----
balance_lalonde <- balance_diagnostics(
result_lalonde, nsw_treat, cps_control, vars_lalonde
)
# Before/after comparison
before_df <- tibble(
variable = vars_lalonde,
std_diff = sapply(vars_lalonde, function(v) {
t_mean <- mean(nsw_treat[[v]])
c_mean <- mean(cps_control[[v]])
pooled_sd <- sqrt((var(nsw_treat[[v]]) + var(cps_control[[v]])) / 2)
(t_mean - c_mean) / pooled_sd
}),
stage = "Before"
)
after_df <- balance_lalonde$var_stats %>%
select(variable, std_diff) %>%
mutate(stage = "After")
balance_plot_df <- bind_rows(before_df, after_df) %>%
mutate(stage = factor(stage, levels = c("Before", "After")))
ggplot(balance_plot_df, aes(x = reorder(variable, abs(std_diff)),
y = std_diff, fill = stage)) +
geom_col(position = "dodge") +
geom_hline(yintercept = c(-0.1, 0.1), linetype = "dashed", color = "#93c54b") +
geom_hline(yintercept = c(-0.25, 0.25), linetype = "dashed", color = "#f47c3c") +
coord_flip() +
labs(
title = "Covariate Balance: Before vs After Matching",
subtitle = "Lalonde-style job training evaluation",
x = "",
y = "Standardized Difference",
fill = ""
) +
scale_fill_manual(values = c("Before" = "#d9534f", "After" = "#93c54b")) +
theme_minimal() +
theme(
legend.position = "bottom",
plot.title = element_text(face = "bold")
)
## ----lalonde-summary----------------------------------------------------------
cat("Balance summary:\n")
cat(" Mean |std diff| before:",
round(mean(abs(before_df$std_diff)), 3), "\n")
cat(" Mean |std diff| after:",
round(balance_lalonde$overall$mean_abs_std_diff, 3), "\n")
cat(" Max |std diff| after:",
round(balance_lalonde$overall$max_abs_std_diff, 3), "\n")
if (balance_lalonde$overall$max_abs_std_diff < 0.25) {
cat("\n✓ All variables within acceptable balance threshold (0.25)\n")
} else {
cat("\n⚠ Some variables exceed 0.25 threshold - consider calipers or blocking\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.