Description Usage Arguments Details Value Examples
cppcor function that returns the confusion matrix and parameters of classification analysis
1 |
dataset |
Data frame object |
ID |
Logical argument, |
cores |
The number of cores to use for parallel execution. The default is 1. |
The dataset argument must be a data frame object, and the last column must
be the classes of the evaluated elements.
The ID argument must be FALSE if the data are correlated and TRUE if the data
are independents.
cppcor return the confusion matriz and parameters of classification analysis
1 2 3 4 5 6 7 8 9 10 | # Seed
set.seed(10)
c1 <- matrix(rnorm(30, mean = c(70,80,90), sd = 30), 10, 3, byrow = TRUE)
c2 <- matrix(rnorm(45, mean = c(30,40,50), sd = 10), 15, 3, byrow = TRUE)
# Data set
dataset <- as.data.frame(cbind(rbind(c1,c2), c(rep(1, 10), rep(2, 15))))
colnames(dataset) <- c("Var1", "Var2", "Var3", "Class")
# Loading package
library(cppcor)
cppcor(dataset, ID = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.