marg_pow: Marginal log-likelihood and posterior density of discrete...

View source: R/optim.R

marg_powR Documentation

Marginal log-likelihood and posterior density of discrete power law via numerical integration

Description

Marginal log-likelihood and posterior density of discrete power law via numerical integration

Usage

marg_pow(df, lower, upper, m_alpha = 0, s_alpha = 10, by = 0.001)

Arguments

df

A data frame with at least two columns, x & count

lower

Real number greater than 1, lower limit for numerical integration

upper

Real number greater than lower, upper limit for numerical integration

m_alpha

Real number (default 0.0), mean of the prior normal distribution for alpha

s_alpha

Positive real number (default 10.0), standard deviation of the prior normal distribution for alpha

by

Positive real number, the width of subintervals between lower and upper, for numerical integration and posterior density evaluation

Value

A list: log_marginal is the marginal log-likelihood, posterior is a data frame of non-zero posterior densities


crandep documentation built on Sept. 11, 2024, 8:01 p.m.