mcmc_mix3_wrapper | R Documentation |
Wrapper of mcmc_mix3
mcmc_mix3_wrapper(
df,
seed,
v_max = 100L,
u_max = 2000L,
log_diff_max = 11,
a_psi1 = 1,
a_psi2 = 1,
a_psiu = 0.001,
b_psiu = 0.9,
m_alpha = 0,
s_alpha = 10,
a_theta = 1,
b_theta = 1,
m_shape = 0,
s_shape = 10,
a_sigma = 1,
b_sigma = 0.01,
a_pseudo = 10,
b_pseudo = 1,
pr_power2 = 0.5,
powerlaw1 = FALSE,
positive1 = FALSE,
positive2 = TRUE,
iter = 20000L,
thin = 20L,
burn = 100000L,
freq = 1000L,
invts = 1,
mc3_or_marg = TRUE
)
df |
A data frame with at least two columns, x & count |
seed |
Integer for |
v_max |
Scalar (default 100), positive integer for the maximum lower threshold to be passed to |
u_max |
Scalar (default 2000), positive integer for the maximum upper threshold to be passed to |
log_diff_max |
Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - |
a_psi1 , a_psi2 , a_psiu , b_psiu , m_alpha , s_alpha , a_theta , b_theta , m_shape , s_shape , a_sigma , b_sigma |
Scalars, real numbers representing the hyperparameters of the prior distributions for the respective parameters. See details for the specification of the priors. |
a_pseudo |
Positive real number, first parameter of the pseudoprior beta distribution for theta2 in model selection; ignored if pr_power2 = 1.0 |
b_pseudo |
Positive real number, second parameter of the pseudoprior beta distribution for theta2 in model selection; ignored if pr_power2 = 1.0 |
pr_power2 |
Real number in [0, 1], prior probability of the discrete power law (between v and u) |
powerlaw1 |
Boolean, is the discrete power law assumed for below v? |
positive1 |
Boolean, is alpha1 positive (TRUE) or unbounded (FALSE)? |
positive2 |
Boolean, is alpha2 positive (TRUE) or unbounded (FALSE)? |
iter |
Positive integer representing the length of the MCMC output |
thin |
Positive integer representing the thinning in the MCMC |
burn |
Non-negative integer representing the burn-in of the MCMC |
freq |
Positive integer representing the frequency of the sampled values being printed |
invts |
Vector of the inverse temperatures for Metropolis-coupled MCMC (if mc3_or_marg = TRUE) or power posterior (if mc3_or_marg = FALSE) |
mc3_or_marg |
Boolean, is Metropolis-coupled MCMC to be used? Ignored if invts = c(1.0) |
A list returned by mcmc_mix3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.