ctGenerate | R Documentation |
This function generates data according to the specified ctsem model object.
ctGenerate(
ctmodelobj,
n.subjects = 100,
burnin = 0,
dtmean = 1,
logdtsd = 0,
dtmat = NA,
wide = FALSE
)
ctmodelobj |
ctsem model object from |
n.subjects |
Number of subjects to output. |
burnin |
Number of initial time points to discard (to simulate stationary data) |
dtmean |
Positive numeric. Average time interval (delta T) to use. |
logdtsd |
Numeric. Standard deviation for variability of the time interval. |
dtmat |
Either NA, or numeric matrix of n.subjects rows and Tpoints-1 columns, containing positive numeric values for all time intervals between measurements. If not NA, dtmean and logdtsd are ignored. |
wide |
Logical. Output in wide format? |
Covariance related matrices are treated as Cholesky factors. TRAITTDPREDCOV and TIPREDCOV matrices are not accounted for, at present. The first 1:n.TDpred rows and columns of TDPREDVAR are used for generating tdpreds at each time point.
#generate data for 2 process model, each process measured by noisy indicator,
#stable individual differences in process levels.
generatingModel<-ctModel(Tpoints=8,n.latent=2,n.TDpred=0,n.TIpred=0,n.manifest=2,
MANIFESTVAR=diag(.1,2),
LAMBDA=diag(1,2),
DRIFT=matrix(c(-.2,-.05,-.1,-.1),nrow=2),
TRAITVAR=matrix(c(.5,.2,0,.8),nrow=2),
DIFFUSION=matrix(c(1,.2,0,4),2),
CINT=matrix(c(1,0),nrow=2),
T0MEANS=matrix(0,ncol=1,nrow=2),
T0VAR=diag(1,2))
data<-ctGenerate(generatingModel,n.subjects=15,burnin=10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.