Nothing
validate_lm_input <- function(processed) {
hardhat::validate_outcomes_are_univariate(processed$outcomes)
hardhat::validate_outcomes_are_numeric(processed$outcomes)
hardhat::validate_predictors_are_numeric(processed$predictors)
predictors <- as.matrix(processed$predictors)
if (ncol(predictors) < 1) stop("Predictors must contain at least 1 feature.")
if (nrow(predictors) < 2) stop("At least 2 samples are required.")
}
new_linear_model <- function(cls, xptr, ...) {
new_model(
cls = c(cls, "cuda_ml_linear_model"),
mode = "regression",
xptr = xptr,
...
)
}
#' Make predictions on new data points.
#'
#' Make predictions on new data points using a linear model.
#'
#' @template predict
#'
#' @importFrom ellipsis check_dots_used
#' @export
predict.cuda_ml_linear_model <- function(object, x, ...) {
check_dots_used()
processed <- hardhat::forge(x, object$blueprint)
preds <- .lm_predict(
input = as.matrix(processed$predictors),
coef = object$xptr$coef,
intercept = object$xptr$intercept
)
postprocess_regression_results(preds)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.