Nothing
context("Ordinary Least Square")
test_that("OLS regressor works as expected", {
for (normalize_input in c(FALSE, TRUE)) {
for (fit_intercept in c(FALSE, TRUE)) {
if (!fit_intercept) {
input <- scale(mtcars, scale = FALSE)
} else {
input <- as.matrix(mtcars)
}
if (normalize_input) {
sklearn_scaler <- sklearn$preprocessing$StandardScaler(
copy = TRUE, with_mean = TRUE, with_std = TRUE
)
sklearn_scaler$fit(as.matrix(input))
sklearn_input <- sklearn_scaler$transform(as.matrix(input))
} else {
sklearn_input <- as.matrix(input)
}
sklearn_ols_regressor <- sklearn$linear_model$LinearRegression(
fit_intercept = fit_intercept
)
sklearn_predictors <- sklearn_input[, which(names(mtcars) != "mpg")]
sklearn_ols_regressor$fit(
X = sklearn_predictors,
y = mtcars$mpg
)
sklearn_ols_regressor_preds <- sklearn_ols_regressor$predict(
sklearn_input[, which(names(mtcars) != "mpg")]
)
for (algo in c("svd", "eig", "qr")) {
cuda_ml_ols_regressor <- cuda_ml_ols(
mpg ~ ., input, method = algo,
fit_intercept = fit_intercept,
normalize_input = normalize_input
)
cuda_ml_ols_regressor_preds <- predict(
cuda_ml_ols_regressor, input[, which(names(mtcars) != "mpg")]
)
expect_equal(
cuda_ml_ols_regressor_preds$.pred,
as.numeric(sklearn_ols_regressor_preds)
)
}
}
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.