Nothing
#' Truncated SVD.
#'
#' Dimensionality reduction using Truncated Singular Value Decomposition.
#'
#' @template model-with-numeric-input
#' @template eigen-decomposition
#' @template transform-input
#' @template cuml-log-level
#' @param n_components Desired dimensionality of output data. Must be strictly
#' less than \code{ncol(x)} (i.e., the number of features in input data).
#' Default: 2.
#'
#' @return A TSVD model object with the following attributes:
#' - "components": a matrix of \code{n_components} rows to be used for
#' dimensionalitiy reduction on new data points.
#' - "explained_variance": (only present if "transform_input" is set to TRUE)
#' amount of variance within the input data explained by each component.
#' - "explained_variance_ratio": (only present if "transform_input" is set to
#' TRUE) fraction of variance within the input data explained by each
#' component.
#' - "singular_values": The singular values corresponding to each component.
#' The singular values are equal to the 2-norms of the \code{n_components}
#' variables in the lower-dimensional space.
#' - "tsvd_params": opaque pointer to TSVD parameters which will be used for
#' performing inverse transforms.
#'
#' @examples
#' library(cuml)
#'
#' iris.tsvd <- cuml_tsvd(iris[1:4], n_components = 2)
#' print(iris.tsvd)
#' @export
cuml_tsvd <- function(x,
n_components = 2L,
eig_algo = c("dq", "jacobi"),
tol = 1e-7, n_iters = 15L,
transform_input = TRUE,
cuml_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")) {
eig_algo <- match_eig_algo(eig_algo)
cuml_log_level <- match_cuml_log_level(cuml_log_level)
model <- .tsvd_fit_transform(
x = as.matrix(x),
n_components = as.integer(n_components),
algo = eig_algo,
tol = as.numeric(tol),
n_iters = as.integer(n_iters),
transform_input = transform_input,
verbosity = cuml_log_level
)
class(model) <- c("cuml_tsvd", class(model))
model
}
#' @export
cuml_inverse_transform.cuml_tsvd <- function(model, x, ...) {
.tsvd_inverse_transform(model = model, x = as.matrix(x))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.