roc01 | R Documentation |
Calculate the distance on the ROC space between points on the ROC curve
and the point of perfect discrimination
from true positives, false positives, true negatives and false negatives.
The inputs must be vectors of equal length. To be used with
method = minimize_metric
.
sensitivity = tp / (tp + fn)
specificity = tn / (tn + fp)
roc01 = sqrt((1 - sensitivity)^2 + (1 - specificity)^2)
roc01(tp, fp, tn, fn, ...)
tp |
(numeric) number of true positives. |
fp |
(numeric) number of false positives. |
tn |
(numeric) number of true negatives. |
fn |
(numeric) number of false negatives. |
... |
for capturing additional arguments passed by method. |
Other metric functions:
F1_score()
,
Jaccard()
,
abs_d_ppv_npv()
,
abs_d_sens_spec()
,
accuracy()
,
cohens_kappa()
,
cutpoint()
,
false_omission_rate()
,
metric_constrain()
,
misclassification_cost()
,
npv()
,
odds_ratio()
,
p_chisquared()
,
plr()
,
ppv()
,
precision()
,
prod_ppv_npv()
,
prod_sens_spec()
,
recall()
,
risk_ratio()
,
sensitivity()
,
specificity()
,
sum_ppv_npv()
,
sum_sens_spec()
,
total_utility()
,
tpr()
,
tp()
,
youden()
roc01(10, 5, 20, 10) roc01(c(10, 8), c(5, 7), c(20, 12), c(10, 18)) oc <- cutpointr(suicide, dsi, suicide, method = minimize_metric, metric = roc01) plot_roc(oc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.