R/summarize_metrics.R

Defines functions summarize_metrics

Documented in summarize_metrics

#' @title Summarize metrics with common descriptors
#' @description
#'  \Sexpr[results=rd, stage=render]{lifecycle::badge("experimental")}
#'
#'  Summarizes all numeric columns. Counts the \code{NA}s and \code{Inf}s in the columns.
#' @param data \code{data.frame} with numeric columns to summarize.
#' @param cols Names of columns to summarize. Non-numeric columns are ignored. (Character)
#' @param na.rm Whether to remove \code{NA}s before summarizing. (Logical)
#' @param inf.rm Whether to remove \code{Inf}s before summarizing. (Logical)
#' @return \code{tibble} where each row is a descriptor of the column.
#'
#'  The \strong{Measure} column contains the name of the descriptor.
#'
#'  The \strong{NAs} row is a count of the \code{NA}s in the column.
#'
#'  The \strong{INFs} row is a count of the \code{Inf}s in the column.
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @export
#' @examples
#' # Attach packages
#' library(cvms)
#' library(dplyr)
#'
#' df <- data.frame("a" = c("a", "a", "a", "b", "b", "b", "c", "c", "c"),
#'                  "b" = c(0.8, 0.6, 0.3, 0.2, 0.4, 0.5, 0.8, 0.1, 0.5),
#'                  "c" = c(0.2, 0.3, 0.4, 0.6, 0.5, 0.8, 0.1, 0.8, 0.3))
#'
#' # Summarize all numeric columns
#' summarize_metrics(df)
#'
#' # Summarize column "b"
#' summarize_metrics(df, cols = "b")
summarize_metrics <- function(data, cols = NULL, na.rm = TRUE, inf.rm = TRUE) {

  # Check arguments ####
  assert_collection <- checkmate::makeAssertCollection()
  checkmate::assert_data_frame(
    x = data,
    min.rows = 1,
    min.cols = 1,
    col.names = "named",
    add = assert_collection
  )
  checkmate::assert_character(
    x = cols, null.ok = TRUE,
    min.len = 1,
    any.missing = FALSE,
    add = assert_collection
  )
  checkmate::assert_flag(x = na.rm, add = assert_collection)
  checkmate::assert_flag(x = inf.rm, add = assert_collection)
  checkmate::reportAssertions(assert_collection)
  if (dplyr::is_grouped_df(data))
    assert_collection$push("Currently, 'data' cannot be grouped.")
  checkmate::reportAssertions(assert_collection)
  # End of argument checks ####

  # Subset the chosen columns
  if (!is.null(cols)) {
    data <- data %>%
      base_select(cols = cols)
  }

  # Select only numeric columns
  data <- data %>%
    dplyr::select_if(is.numeric)

  # Start by replacing INF with NA
  # We keep the infs as well, as we wish to distinguish between them in the summary
  inf_replacement <- replace_inf_with_na(data)
  data_no_infs <- inf_replacement[["metric_cols"]]
  rows_with_infs <- inf_replacement[["rows_with_infs"]]

  # TODO Test this - what is the effect when there are actual Infs in data?
  if (isTRUE(inf.rm)) {
    data <- data_no_infs
  }

  # Summarize the metrics with a range of functions
  # Note: This may be better solveable with pivot_* from tidyr, when it is on CRAN
  # This isn't exactly pretty.

  descriptors <- list(
    "Mean" = mean,
    "Median" = median,
    "SD" = sd,
    "IQR" = IQR,
    "Max" = max,
    "Min" = min,
    "NAs" = function(x, na.rm) {
      sum(is.na(x))
    }
  )

  # Summarize metrics
  summarized_metrics <- dplyr::bind_rows(
    plyr::ldply(names(descriptors), function(descr) {
      d_fn <- descriptors[[descr]]
      data %>%
        dplyr::summarize_all(.funs = list(~ d_fn(., na.rm = na.rm))) %>%
        dplyr::mutate(Measure = descr)
    }),
    rows_with_infs %>%
      dplyr::summarize_all(.funs = list(~ sum(is.infinite(.)))) %>%
      dplyr::mutate(Measure = "INFs")
  ) %>%
    position_first(col = "Measure")

  # Remove the INFs from the NAs count
  if (isTRUE(inf.rm) && nrow(rows_with_infs) > 0) {
    summarized_metrics <- subtract_inf_count_from_na_count(summarized_metrics)
  }

  summarized_metrics %>%
    dplyr::as_tibble()
}

replace_inf_with_na <- function(metric_cols) {

  # Check arguments ####
  assert_collection <- checkmate::makeAssertCollection()
  checkmate::assert_data_frame(x = metric_cols,
                               types = "numeric",
                               min.cols = 1,
                               add = assert_collection)
  checkmate::reportAssertions(assert_collection)
  # End of argument checks ####

  # Convert to tibble - required so
  # metric_cols_with_infs won't be numeric(0)
  if (!tibble::is_tibble(metric_cols)){
    metric_cols <- dplyr::as_tibble(metric_cols)
  }

  # Get rows with INFs
  metric_cols_with_infs <- metric_cols[is.infinite(rowSums(metric_cols)), ]

  # Replace infs with NA
  if (nrow(metric_cols_with_infs) > 0) {
    metric_cols <- do.call(
      data.frame,
      c(
        lapply(
          metric_cols,
          function(x) {
            replace(x, is.infinite(x), NA)
          }
        ),
        check.names = FALSE,
        fix.empty.names = FALSE,
        stringsAsFactors = FALSE
      )
    )
  }

  list(
    "metric_cols" = metric_cols,
    "rows_with_infs" = metric_cols_with_infs
  )
}

Try the cvms package in your browser

Any scripts or data that you put into this service are public.

cvms documentation built on Sept. 11, 2024, 6:22 p.m.