tests/testthat/test_plotting_functions.R

library(cvms)
context("plotting functions")

test_that("plot_confusion_matrix() returns expected plots", {

  if (!requireNamespace("rsvg", quietly = TRUE) ||
      !requireNamespace("ggimage", quietly = TRUE)) {
    testthat::skip("missing 'rsvg' and/or 'ggimage'.")
  }

  # Note: These are just initial tests
  # There's probably a high number of errors it won't catch

  # TODO Check out https://github.com/r-lib/vdiffr
  # It may make testing easier and better

  targets <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
  predictions <- c(1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0)

  # Create confusion matrix with default metrics
  cm <- confusion_matrix(targets, predictions)
  cm[["Confusion Matrix"]]

  expect_equal(cm[["Confusion Matrix"]][[1]]$N, c(4L, 2L, 2L, 4L))

  # cm[["Confusion Matrix"]][[1]]$N[[3]] <- 0

  p1 <- plot_confusion_matrix(cm[["Confusion Matrix"]][[1]])
  expect_equal(p1$data$Target, structure(c(1L, 1L, 2L, 2L), .Label = c("0", "1"), class = "factor"))
  expect_equal(p1$data$Prediction, structure(c(1L, 2L, 1L, 2L), .Label = c("0", "1"), class = "factor"))
  expect_equal(p1$data$N, c(4L, 2L, 2L, 4L))
  expect_equal(p1$data$N_text, as.character(c(4L, 2L, 2L, 4L)))
  expect_equal(p1$data$Normalized, c(33.3333333333333, 16.6666666666667, 16.6666666666667, 33.3333333333333))
  expect_equal(p1$data$Normalized_text, c("33.3%", "16.7%", "16.7%", "33.3%"))
  expect_equal(p1$data$Class_N, c(6, 6, 6, 6))
  expect_equal(p1$data$Class_Percentage, c(66.6666666666667, 33.3333333333333, 33.3333333333333, 66.6666666666667))
  expect_equal(p1$data$Class_Percentage_text, c("66.7%", "33.3%", "33.3%", "66.7%"))
  expect_equal(p1$data$Prediction_N, c(6, 6, 6, 6))
  expect_equal(p1$data$Prediction_Percentage, c(66.6666666666667, 33.3333333333333, 33.3333333333333, 66.6666666666667))
  expect_equal(p1$data$Prediction_Percentage_text, c("66.7%", "33.3%", "33.3%", "66.7%"))


  expect_equal(length(p1$layers), 10)
  expect_equal(
    sapply(p1$layers, function(x) class(x$geom)[1]),
    c("GeomTile", "GeomImage", "GeomText", "GeomText", "GeomText", "GeomText",
      "GeomImage", "GeomImage", "GeomImage", "GeomImage")
  )
  expect_equal(
    p1$labels,
    list(
      x = "Target", y = "Prediction",
      fill = "N", label = "N", image = "image_3d"
    )
  )

  expect_equal(
    p1$scales$scales[[1]]$limits,
    c(2.0, 4.8)
  )
  p1_darkest <- plot_confusion_matrix(cm[["Confusion Matrix"]][[1]], darkness = 1.0)
  expect_equal(
    p1_darkest$scales$scales[[1]]$limits,
    c(2.0, 4.0)
  )

  expect_equal(
    p1$mapping,
    structure(list(x = ~ .data$Target, y = ~ .data$Prediction, fill = ~ .data$Intensity),
      class = "uneval"
    )
  )

  expect_error(
    xpectr::strip_msg(plot_confusion_matrix(cm[["Confusion Matrix"]][[1]], darkness = 1.1)),
    xpectr::strip("1 assertions failed:\n * Variable 'darkness': Element 1 is not <= 1."),
    fixed = TRUE
  )
  expect_error(
    xpectr::strip_msg(plot_confusion_matrix(cm[["Confusion Matrix"]][[1]], darkness = -.1)),
    xpectr::strip("1 assertions failed:\n * Variable 'darkness': Element 1 is not >= 0."),
    fixed = TRUE
  )
})

test_that("plot_confusion_matrix() with multiclass conf mat returns expected plots", {

  if (!requireNamespace("rsvg", quietly = TRUE) ||
      !requireNamespace("ggimage", quietly = TRUE)) {
    testthat::skip("missing 'rsvg' and/or 'ggimage'.")
  }

  # Note: These are just initial tests
  # There's probably a high number of errors it won't catch

  # TODO Check out https://github.com/r-lib/vdiffr
  # It may make testing easier and better

  xpectr::set_test_seed(1)
  targets <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2, 2, 2)
  predictions <- c(1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 2, 2, 1, 2)

  # Create confusion matrix with default metrics
  cm <- confusion_matrix(targets, predictions)
  conf_mat <- cm[["Confusion Matrix"]][[1]]
  conf_mat[["N"]] <- round(conf_mat[["N"]] * 100 + runif(n = nrow(conf_mat), 0, 100))

  p1 <- plot_confusion_matrix(conf_mat) # , font_vertical = font(nudge_x = -.84))

  expect_equal(p1$data$Target, structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L),
    .Label = c("0", "1", "2"), class = "factor"
  ))
  expect_equal(p1$data$Prediction, structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L),
    .Label = c("0", "1", "2"), class = "factor"
  ))
  expect_equal(p1$data$N, c(427L, 237L, 57L, 291L, 420L, 90L, 194L, 266L, 363L))
  expect_equal(p1$data$N_text, as.character(c(427L, 237L, 57L, 291L, 420L, 90L, 194L, 266L, 363L)))
  expect_equal(p1$data$Normalized, c(
    18.2089552238806, 10.1066098081023, 2.43070362473348, 12.409381663113,
    17.910447761194, 3.83795309168444, 8.272921108742, 11.3432835820896,
    15.4797441364606
  ))
  expect_equal(p1$data$Normalized_text, c(
    "18.2%", "10.1%", "2.4%", "12.4%", "17.9%", "3.8%", "8.3%",
    "11.3%", "15.5%"
  ))
  expect_equal(p1$data$Class_N, c(721L, 721L, 721L, 801L, 801L, 801L, 823L, 823L, 823L))
  expect_equal(p1$data$Class_Percentage, c(
    59.2233009708738, 32.871012482663, 7.90568654646325, 36.3295880149813,
    52.4344569288389, 11.2359550561798, 23.5722964763062, 32.3207776427704,
    44.1069258809235
  ))
  expect_equal(p1$data$Class_Percentage_text, c(
    "59.2%", "32.9%", "7.9%", "36.3%",
    "52.4%", "11.2%", "23.6%", "32.3%",
    "44.1%"
  ))
  expect_equal(p1$data$Prediction_N, c(912L, 923L, 510L, 912L, 923L, 510L, 912L, 923L, 510L))
  expect_equal(p1$data$Prediction_Percentage, c(
    46.8201754385965, 25.6771397616468, 11.1764705882353, 31.9078947368421,
    45.5037919826652, 17.6470588235294, 21.2719298245614, 28.819068255688,
    71.1764705882353
  ))
  expect_equal(p1$data$Prediction_Percentage_text, c(
    "46.8%", "25.7%", "11.2%", "31.9%",
    "45.5%", "17.6%", "21.3%", "28.8%",
    "71.2%"
  ))

  expect_equal(length(p1$layers), 10)
  expect_equal(
    sapply(p1$layers, function(x) class(x$geom)[1]),
    c("GeomTile", "GeomImage", "GeomText", "GeomText", "GeomText", "GeomText",
      "GeomImage", "GeomImage", "GeomImage", "GeomImage")
  )
  expect_equal(
    p1$labels,
    list(
      x = "Target", y = "Prediction",
      fill = "N", label = "N", image = "image_3d"
    )
  )

  expect_equal(
    p1$scales$scales[[1]]$limits,
    c(57, 575)
  )
  p1_darkest <- plot_confusion_matrix(conf_mat, darkness = 1.0)
  expect_equal(
    p1_darkest$scales$scales[[1]]$limits,
    c(57, 427)
  )

  expect_equal(
    p1$mapping,
    structure(list(x = ~ .data$Target, y = ~ .data$Prediction, fill = ~ .data$Intensity),
      class = "uneval"
    )
  )

  # Set zero

  conf_mat[["N"]][[3]] <- 0

  p2 <- plot_confusion_matrix(conf_mat)

  expect_equal(length(p2$layers), 11)
  expect_equal(
    sapply(p2$layers, function(x) class(x$geom)[1]),
    c("GeomTile", "GeomImage", "GeomImage", "GeomText", "GeomText", "GeomText",
      "GeomText", "GeomImage", "GeomImage", "GeomImage", "GeomImage")
  )
  expect_equal(
    p2$labels,
    list(
      x = "Target", y = "Prediction",
      fill = "N", label = "N",
      image = "image_skewed_lines"
    )
  )

  # With 0 and 5 classes
  xpectr::set_test_seed(99)
  targets <- sample(rep(1:5, 20),size = 20)
  predictions <- sample(rep(1:5, 20),size = 20)

  # Create confusion matrix with default metrics
  cm <- confusion_matrix(targets, predictions)[["Confusion Matrix"]][[1]]

  # Testing values
  expect_equal(
    cm$N,
    c(0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 3, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1))

  p3 <- plot_confusion_matrix(cm)

  expect_equal(length(p3$layers), 11)
  expect_equal(
    sapply(p3$layers, function(x) class(x$geom)[1]),
    c("GeomTile", "GeomImage", "GeomImage", "GeomText", "GeomText", "GeomText", "GeomText",
      "GeomImage", "GeomImage", "GeomImage", "GeomImage")
  )
  expect_equal(
    p3$labels,
    list(
      x = "Target", y = "Prediction",
      fill = "N", label = "N",
      image = "image_skewed_lines"
    )
  )

})


test_that("plot_confusion_matrix() with sum tiles, class order, and intensity_by percentage", {

  if (!requireNamespace("rsvg", quietly = TRUE) ||
      !requireNamespace("ggimage", quietly = TRUE)) {
    testthat::skip("missing 'rsvg' and/or 'ggimage'.")
  }
  if (!requireNamespace("ggnewscale", quietly = TRUE)) {
    testthat::skip("missing 'ggnewscale'.")
  }

  # Note: These are just initial tests
  # There's probably a high number of errors it won't catch

  # TODO Check out https://github.com/r-lib/vdiffr
  # It may make testing easier and better

  xpectr::set_test_seed(1)
  targets <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2, 2, 2)
  predictions <- c(1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 2, 2, 1, 2)

  # Create confusion matrix with default metrics
  cm <- confusion_matrix(targets, predictions)
  conf_mat <- cm[["Confusion Matrix"]][[1]]
  conf_mat[["N"]] <- round(conf_mat[["N"]] * 100 + runif(n = nrow(conf_mat), 0, 100))

  p1 <- plot_confusion_matrix(conf_mat, add_sums = TRUE,
                              class_order = c("0", "2", "1"),
                              intensity_by = "normalized",
                              sums_settings = sum_tile_settings(tc_tile_border_color = "red"))

  expect_equal(p1$data$Target,
               structure(c(2L, 2L, 2L, 4L, 4L, 4L, 3L, 3L, 3L, 2L, 3L, 4L, 1L,
               1L, 1L, 1L), .Label = c("\u2211", "0", "2", "1"), class = "factor"))
  expect_equal(p1$data$Prediction,
               structure(c(2L, 4L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 1L, 1L, 1L, 2L,
               3L, 4L, 1L), .Label = c("\u2211", "0", "2", "1"), class = "factor"))
  expect_equal(p1$data$N, c(427L, 237L, 57L, 291L, 420L, 90L, 194L, 266L, 363L,
                            721L, 823L, 801L, 912L, 510L, 923L, 2345L))
  expect_equal(p1$data$N_text,
               as.character(c(427L, 237L, 57L, 291L, 420L, 90L, 194L, 266L,
                              363L, 721L, 823L, 801L, 912L, 510L, 923L, "")))
  expect_equal(p1$data$Normalized,
               c(18.2089552238806, 10.1066098081023, 2.43070362473348, 12.409381663113,
               17.910447761194, 3.83795309168444, 8.272921108742, 11.3432835820896,
               15.4797441364606, 30.7462686567164, 35.0959488272921, 34.1577825159915,
               38.8912579957356, 21.7484008528785, 39.3603411513859, 100))
  expect_equal(p1$data$Normalized_text,
               c("18.2%", "10.1%", "2.4%", "12.4%", "17.9%", "3.8%", "8.3%",
               "11.3%", "15.5%", "30.7%", "35.1%", "34.2%", "38.9%", "21.7%",
               "39.4%", "2345"))
  expect_equal(p1$data$Class_N,
               c(721L, 721L, 721L, 801L, 801L, 801L, 823L, 823L, 823L, NA, NA,
               NA, NA, NA, NA, NA))
  expect_equal(p1$data$Class_Percentage,
               c(59.2233009708738, 32.871012482663, 7.90568654646325, 36.3295880149813,
               52.4344569288389, 11.2359550561798, 23.5722964763062, 32.3207776427704,
               44.1069258809235, NA, NA, NA, NA, NA, NA, NA))
  expect_equal(p1$data$Class_Percentage_text,
               c("59.2%", "32.9%", "7.9%", "36.3%", "52.4%", "11.2%", "23.6%",
               "32.3%", "44.1%", "", "", "", "", "", "", ""))
  expect_equal(p1$data$Prediction_N,
               c(912L, 923L, 510L, 912L, 923L, 510L, 912L, 923L, 510L, NA, NA,
               NA, NA, NA, NA, NA))
  expect_equal(p1$data$Prediction_Percentage,
               c(46.8201754385965, 25.6771397616468, 11.1764705882353, 31.9078947368421,
               45.5037919826652, 17.6470588235294, 21.2719298245614, 28.819068255688,
               71.1764705882353, NA, NA, NA, NA, NA, NA, NA))
  expect_equal(p1$data$Prediction_Percentage_text,
               c("46.8%", "25.7%", "11.2%", "31.9%", "45.5%", "17.6%", "21.3%",
               "28.8%", "71.2%", "", "", "", "", "", "", ""))

  expect_equal(length(p1$layers), 16)
  expect_equal(
    sapply(p1$layers, function(x) class(x$geom)[1]),
    c("NewGeomTile", "GeomTile", "GeomTile", "GeomImage", "GeomText", "GeomText",
    "GeomText", "GeomText", "GeomText", "GeomText", "GeomText", "GeomText",
    "GeomImage", "GeomImage", "GeomImage", "GeomImage"))

  labels <- p1$labels
  attributes(labels$fill_ggnewscale_1) <- NULL
  expect_equal(
    labels,
    list(x = "Target", y = "Prediction", fill_ggnewscale_1 = "Normalized",
        label = "N", fill = "Intensity", image = "image_3d"),
  )

  # It's the normalized data (percentages)
  expect_equal(
    p1$scales$scales[[1]]$limits,
    c(0, 140)
  )

  expect_equal(
    p1$scales$scales[[3]]$limits,
    c("1", "2", "0", "\u2211")
  )

  expect_equal(
    p1$mapping,
    structure(list(x = ~ .data$Target, y = ~ .data$Prediction, fill_ggnewscale_1 = ~ .data$Intensity),
              class = "uneval"
    )
  )

  # Set zero

  conf_mat[["N"]][[3]] <- 0

  p2 <- plot_confusion_matrix(conf_mat, add_sums = TRUE,
                        class_order = c("0", "2", "1"),
                        intensity_by = "normalized",
                        sums_settings = sum_tile_settings(tc_tile_border_color = "red"))

  expect_equal(length(p2$layers), 17)
  expect_equal(
    sapply(p2$layers, function(x) class(x$geom)[1]),
    c("NewGeomTile", "GeomTile", "GeomTile","GeomImage", "GeomImage", "GeomText",
    "GeomText", "GeomText", "GeomText", "GeomText", "GeomText", "GeomText",
    "GeomText", "GeomImage", "GeomImage", "GeomImage", "GeomImage"
    )
  )

  labels <- p2$labels
  attributes(labels$fill_ggnewscale_1) <- NULL
  expect_equal(
    labels,
    list(
      x = "Target", y = "Prediction",
      fill_ggnewscale_1 = "Normalized",
      label = "N",
      fill = "Intensity",
      image = "image_skewed_lines"
    )
  )

})



test_that("testing diag_percentages_only argument", {
  xpectr::set_test_seed(42)

  if (!requireNamespace("rsvg", quietly = TRUE) ||
      !requireNamespace("ggimage", quietly = TRUE)) {
    testthat::skip("missing 'rsvg' and/or 'ggimage'.")
  }

  targets <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
  predictions <- c(1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0)

  # Create confusion matrix with default metrics
  cm <- confusion_matrix(targets, predictions)
  cm[["Confusion Matrix"]]

  expect_equal(cm[["Confusion Matrix"]][[1]]$N, c(4L, 2L, 2L, 4L))

  # cm[["Confusion Matrix"]][[1]]$N[[3]] <- 0

  p1 <- plot_confusion_matrix(cm[["Confusion Matrix"]][[1]], diag_percentages_only = TRUE)
  expect_equal(p1$data$N, c(4L, 2L, 2L, 4L))
  expect_equal(p1$data$N_text, as.character(c(4L, 2L, 2L, 4L)))
  expect_equal(p1$data$Normalized, c(33.3333333333333, 16.6666666666667, 16.6666666666667, 33.3333333333333))
  expect_equal(p1$data$Normalized_text, c("33.3%", "16.7%", "16.7%", "33.3%"))
  expect_equal(p1$data$Class_N, c(6, 6, 6, 6))
  expect_equal(p1$data$Class_Percentage, c(66.6666666666667, 33.3333333333333, 33.3333333333333, 66.6666666666667))
  expect_equal(p1$data$Class_Percentage_text, c("66.7%", "", "", "66.7%"))
  expect_equal(p1$data$Prediction_N, c(6, 6, 6, 6))
  expect_equal(p1$data$Prediction_Percentage, c(66.6666666666667, 33.3333333333333, 33.3333333333333, 66.6666666666667))
  expect_equal(p1$data$Prediction_Percentage_text, c("66.7%", "", "", "66.7%"))
  # ...

})


test_that("font() gets updated correctly", {
  f_1 <- font(
    size = 9,
    color = "yellow",
    alpha = 0.3,
    nudge_x = 0.7,
    nudge_y = 0.2,
    angle = 91,
    family = "mono",
    fontface = "bold",
    hjust = 0.3,
    vjust = 1.9,
    lineheight = 9,
    digits = -3,
    prefix = "no_",
    suffix = "_on"
  )

  f_2 <- font(
    size = 2,
    color = "red",
    alpha = 0.9,
    nudge_x = -2.0,
    nudge_y = -0.3,
    angle = NULL,
    family = NULL,
    fontface = "plain",
    hjust = -2.3,
    vjust = 3.4,
    lineheight = 2,
    digits = 2,
    prefix = "ha_",
    suffix = "_ah"
  )

  expect_equal(
    f_1,
    list(
      size = 9, color = "yellow", alpha = 0.3, nudge_x = 0.7,
      nudge_y = 0.2, angle = 91, family = "mono", fontface = "bold",
      hjust = 0.3, vjust = 1.9, lineheight = 9, digits = -3, prefix = "no_",
      suffix = "_on"
    )
  )
  expect_equal(
    f_2,
    list(
      size = 2, color = "red", alpha = 0.9, nudge_x = -2, nudge_y = -0.3,
      angle = NULL, family = NULL, fontface = "plain", hjust = -2.3,
      vjust = 3.4, lineheight = 2, digits = 2, prefix = "ha_",
      suffix = "_ah"
    )
  )

  f_1_upd_1 <- update_font_setting(
    f_1,
    f_2
  )
  expect_equal(f_1, f_1_upd_1)

  f_1_upd_2 <- update_font_setting(
    f_1,
    f_2,
    initial_vals = list(
      size = function(x) {
        x + 2
      },
      color = function(x) {
        paste0("light", x)
      },
      alpha = function(x) {
        x * 0.5
      },
      nudge_x = function(x) {
        x * 2
      },
      nudge_y = function(x) {
        x / 2
      },
      angle = function(x) {
        x + 360
      },
      family = function(x) {
        paste0("mac_", x)
      },
      fontface = function(x) {
        paste0("way_too_", x)
      },
      hdjust = function(x) {
        abs(x)
      },
      vdjust = function(x) {
        -abs(x)
      },
      lineheight = function(x) {
        1.2
      },
      digits = function(x) {
        ifelse(x < 0, -1, x)
      },
      prefix = function(x) {
        paste0("prefix_", x)
      },
      suffix = function(x) {
        paste0(x, "_suffix")
      }
    )
  )

  expect_equal(
    f_1_upd_2,
    list(
      size = 11, color = "lightyellow", alpha = 0.15, nudge_x = 1.4,
      nudge_y = 0.1, angle = 451, family = "mac_mono", fontface = "way_too_bold",
      hjust = 0.3, vjust = 1.9, lineheight = 1.2, digits = -1,
      prefix = "prefix_no_", suffix = "_on_suffix"
    )
  )

  # Replace the NULLs in f_2 with the values from f_1
  f_2_upd_1 <- update_font_setting(
    f_2,
    f_1,
    initial_vals = list(
      angle = function(x) {
        x * 2
      }
    )
  )

  expect_equal(f_2_upd_1$angle, 91 * 2)
  expect_equal(f_2_upd_1$family, "mono")
})

Try the cvms package in your browser

Any scripts or data that you put into this service are public.

cvms documentation built on Sept. 11, 2024, 6:22 p.m.