Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- include = FALSE, warning = FALSE, message = FALSE-----------------------
library(dabestr)
## ---- echo = FALSE, warning = FALSE, message = FALSE--------------------------
df <- data.frame(
`s` = c("Drug", "Placebo"),
`Wild type` = c("$X_D, W$", "$X_P, W$"),
`Mutant` = c("$X_D, M$", "$X_P, M$")
)
colnames(df) <- c(" ", "Wild type", "Mutant")
knitr::kable(df, escape = FALSE) %>%
kableExtra::column_spec(1, bold = TRUE) %>%
kableExtra::column_spec(1:2, border_right = TRUE)
## ----setup, eval = FALSE------------------------------------------------------
# library(dabestr)
## -----------------------------------------------------------------------------
set.seed(12345) # Fix the seed so the results are replicable.
# pop_size = 10000 # Size of each population.
N <- 20 # The number of samples taken from each population
# Create samples
placebo <- rnorm(N / 2, mean = 4, sd = 0.4)
placebo <- c(placebo, rnorm(N / 2, mean = 2.8, sd = 0.4))
drug <- rnorm(N / 2, mean = 3, sd = 0.4)
drug <- c(drug, rnorm(N / 2, mean = 2.5, sd = 0.4))
# Add a `Genotype` column as the second variable
genotype <- c(rep("M", N / 2), rep("W", N / 2))
# Add an `id` column for paired data plotting.
id <- 1:N
# Add a `Rep` column as the first variable for the 2 replicates of experiments done
Rep <- rep(c("Rep1", "Rep2"), N / 2)
# Combine all columns into a DataFrame.
df <- tibble::tibble(
Placebo = placebo,
Drug = drug,
Genotype = genotype,
ID = id,
Rep = Rep
)
df <- df %>%
tidyr::gather(key = Treatment, value = Measurement, -ID, -Genotype, -Rep)
## -----------------------------------------------------------------------------
knitr::kable(head(df))
## ---- eval = FALSE------------------------------------------------------------
# unpaired_delta2 <- load(df,
# x = Genotype, y = Measurement,
# experiment = Treatment, colour = Genotype,
# delta2 = TRUE
# )
## ---- echo = FALSE------------------------------------------------------------
unpaired_delta2 <- load(df,
x = Genotype, y = Measurement,
experiment = Treatment, colour = Genotype,
delta2 = TRUE,
experiment_label = c("Placebo", "Drug"),
x1_level = c("W", "M")
)
## -----------------------------------------------------------------------------
print(unpaired_delta2)
## -----------------------------------------------------------------------------
unpaired_delta2.mean_diff <- mean_diff(unpaired_delta2)
print(unpaired_delta2.mean_diff)
## -----------------------------------------------------------------------------
dabest_plot(unpaired_delta2.mean_diff)
## -----------------------------------------------------------------------------
unpaired_delta2_specified.mean_diff <- load(df,
x = Genotype, y = Measurement,
experiment = Treatment, colour = Genotype,
delta2 = TRUE,
experiment_label = c("Drug", "Placebo"),
x1_level = c("M", "W")
) %>%
mean_diff()
dabest_plot(unpaired_delta2_specified.mean_diff)
## -----------------------------------------------------------------------------
paired_delta2.mean_diff <- load(df,
x = Treatment, y = Measurement,
experiment = Genotype, colour = Rep,
delta2 = TRUE,
idx = list(
c("Placebo W", "Drug W"),
c("Placebo M", "Drug M")
),
paired = "baseline", id_col = ID
) %>%
mean_diff()
dabest_plot(paired_delta2.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
## -----------------------------------------------------------------------------
dabest_plot(unpaired_delta2.mean_diff, show_delta2 = FALSE)
## -----------------------------------------------------------------------------
# cohens_d(unpaired_delta2)
## -----------------------------------------------------------------------------
print(unpaired_delta2.mean_diff$boot_result)
## -----------------------------------------------------------------------------
# print(unpaired_delta2.mean_diff$permtest_pvals$permutation_test_results)
print(unpaired_delta2.mean_diff$permtest_pvals$pval_permtest)
## -----------------------------------------------------------------------------
print(unpaired_delta2.mean_diff$permtest_pvals$pval_for_tests)
## -----------------------------------------------------------------------------
print(unpaired_delta2.mean_diff$permtest_pvals$pvalues)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.