Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, warning = FALSE, message = FALSE----------------------------------
library(dabestr)
## -----------------------------------------------------------------------------
set.seed(12345) # Fix the seed so the results are replicable.
# pop_size = 10000 # Size of each population.
N <- 20 # The number of samples taken from each population
# Create samples
c1 <- rnorm(N, mean = 3, sd = 0.4)
c2 <- rnorm(N, mean = 3.5, sd = 0.75)
c3 <- rnorm(N, mean = 3.25, sd = 0.4)
t1 <- rnorm(N, mean = 3.5, sd = 0.5)
t2 <- rnorm(N, mean = 2.5, sd = 0.6)
t3 <- rnorm(N, mean = 3, sd = 0.75)
# Add a `gender` column for coloring the data.
gender <- c(rep("Male", N / 2), rep("Female", N / 2))
# Add an `id` column for paired data plotting.
id <- 1:N
# Combine samples and gender into a DataFrame.
df <- tibble::tibble(
`Control 1` = c1, `Control 2` = c2, `Control 3` = c3,
`Test 1` = t1, `Test 2` = t2, `Test 3` = t3,
Gender = gender, ID = id
)
df <- df %>%
tidyr::gather(key = Group, value = Measurement, -ID, -Gender)
## -----------------------------------------------------------------------------
knitr::kable(head(df))
## -----------------------------------------------------------------------------
unpaired <- load(df,
x = Group, y = Measurement,
idx = list(
c("Control 1", "Test 1"),
c("Control 2", "Test 2"),
c("Control 3", "Test 3")
),
minimeta = TRUE
)
## -----------------------------------------------------------------------------
print(unpaired)
## -----------------------------------------------------------------------------
unpaired.mean_diff <- mean_diff(unpaired)
print(unpaired.mean_diff)
## -----------------------------------------------------------------------------
unpaired.mean_diff$boot_result
## -----------------------------------------------------------------------------
dabest_plot(unpaired.mean_diff)
## -----------------------------------------------------------------------------
dabest_plot(unpaired.mean_diff, show_mini_meta = FALSE)
## -----------------------------------------------------------------------------
paired.mean_diff <- load(df,
x = Group, y = Measurement,
idx = list(
c("Control 1", "Test 1"),
c("Control 2", "Test 2"),
c("Control 3", "Test 3")
),
paired = "baseline", id_col = ID,
minimeta = TRUE
) %>%
mean_diff()
dabest_plot(paired.mean_diff, raw_marker_size = 0.5, raw_marker_alpha = 0.3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.