Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, warning = FALSE, message = FALSE----------------------------------
library(dabestr)
## -----------------------------------------------------------------------------
set.seed(12345) # Fix the seed so the results are replicable.
# pop_size = 10000 # Size of each population.
N <- 20 # The number of samples taken from each population
# Create samples
c1 <- rnorm(N, mean = 3, sd = 0.4)
c2 <- rnorm(N, mean = 3.5, sd = 0.75)
c3 <- rnorm(N, mean = 3.25, sd = 0.4)
t1 <- rnorm(N, mean = 3.5, sd = 0.5)
t2 <- rnorm(N, mean = 2.5, sd = 0.6)
t3 <- rnorm(N, mean = 3, sd = 0.75)
t4 <- rnorm(N, mean = 3.5, sd = 0.75)
t5 <- rnorm(N, mean = 3.25, sd = 0.4)
t6 <- rnorm(N, mean = 3.25, sd = 0.4)
# Add a `gender` column for coloring the data.
gender <- c(rep("Male", N / 2), rep("Female", N / 2))
# Add an `id` column for paired data plotting.
id <- 1:N
# Combine samples and gender into a DataFrame.
df <- tibble::tibble(
`Control 1` = c1, `Control 2` = c2, `Control 3` = c3,
`Test 1` = t1, `Test 2` = t2, `Test 3` = t3, `Test 4` = t4, `Test 5` = t5, `Test 6` = t6,
Gender = gender, ID = id
)
df <- df %>%
tidyr::gather(key = Group, value = Measurement, -ID, -Gender)
## -----------------------------------------------------------------------------
two_groups_paired_sequential <- load(df,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"),
paired = "sequential", id_col = ID
)
print(two_groups_paired_sequential)
## -----------------------------------------------------------------------------
two_groups_paired_baseline <- load(df,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"),
paired = "baseline", id_col = ID
)
print(two_groups_paired_baseline)
## -----------------------------------------------------------------------------
two_groups_paired_sequential.mean_diff <- mean_diff(two_groups_paired_sequential)
two_groups_paired_baseline.mean_diff <- mean_diff(two_groups_paired_baseline)
## -----------------------------------------------------------------------------
print(two_groups_paired_sequential.mean_diff)
## -----------------------------------------------------------------------------
print(two_groups_paired_baseline.mean_diff)
## -----------------------------------------------------------------------------
dabest_plot(two_groups_paired_sequential.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
## ---- eval = FALSE------------------------------------------------------------
# dabest_plot(two_groups_paired_sequential.mean_diff,
# float_contrast = FALSE,
# raw_marker_size = 0.5, raw_marker_alpha = 0.3,
# contrast_ylim = c(-0.3, 1.3)
# )
## ---- echo = FALSE------------------------------------------------------------
pp_plot <- dabest_plot(two_groups_paired_sequential.mean_diff,
float_contrast = FALSE,
raw_marker_size = 0.5, raw_marker_alpha = 0.3,
contrast_ylim = c(-0.3, 1.3)
)
cowplot::plot_grid(
plotlist = list(NULL, pp_plot, NULL),
nrow = 1,
ncol = 3,
rel_widths = c(2.5, 5, 2.5)
)
## -----------------------------------------------------------------------------
dabest_plot(two_groups_paired_baseline.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
## ---- eval = FALSE------------------------------------------------------------
# dabest_plot(two_groups_paired_baseline.mean_diff,
# float_contrast = FALSE,
# raw_marker_size = 0.5, raw_marker_alpha = 0.3,
# contrast_ylim = c(-0.3, 1.3)
# )
## ---- echo = FALSE------------------------------------------------------------
pp_plot <- dabest_plot(two_groups_paired_baseline.mean_diff,
float_contrast = FALSE,
raw_marker_size = 0.5, raw_marker_alpha = 0.3,
contrast_ylim = c(-0.3, 1.3)
)
cowplot::plot_grid(
plotlist = list(NULL, pp_plot, NULL),
nrow = 1,
ncol = 3,
rel_widths = c(2.5, 5, 2.5)
)
## -----------------------------------------------------------------------------
sequential_repeated_measures.mean_diff <- load(df,
x = Group, y = Measurement,
idx = c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
paired = "sequential", id_col = ID
) %>%
mean_diff()
print(sequential_repeated_measures.mean_diff)
## -----------------------------------------------------------------------------
dabest_plot(sequential_repeated_measures.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
## -----------------------------------------------------------------------------
baseline_repeated_measures.mean_diff <- load(df,
x = Group, y = Measurement,
idx = c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
paired = "baseline", id_col = ID
) %>%
mean_diff()
print(baseline_repeated_measures.mean_diff)
## -----------------------------------------------------------------------------
dabest_plot(baseline_repeated_measures.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
## -----------------------------------------------------------------------------
multi_baseline_repeated_measures.mean_diff <- load(df,
x = Group, y = Measurement,
idx = list(
c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
c(
"Control 2", "Test 4",
"Test 5", "Test 6"
)
),
paired = "baseline", id_col = ID
) %>%
mean_diff()
dabest_plot(multi_baseline_repeated_measures.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.