Nothing
#### Loading of datasets
testthat::test_that("Able to load dataset", {
np_dataset <- generate_non_proportional_dataset()
expect_no_error(dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1")
))
p_dataset <- generate_proportional_dataset()
expect_no_error(dabestr::load(p_dataset,
x = Group, y = Success,
idx = c("Control 1", "Test 1"), proportional = TRUE
))
dd_dataset <- generate_deltadelta_dataset()
expect_no_error(dabestr::load(dd_dataset,
x = Genotype, y = Measurement,
delta2 = TRUE, experiment = Treatment,
idx = list(c("W Placebo", "M Placebo"), c("W Drug", "M Drug")),
colour = Genotype
))
})
#### Detecting non-valid params
testthat::test_that("Able to detect non-valid params", {
np_dataset <- generate_non_proportional_dataset()
expect_error(
dabestr::load(np_dataset,
x = Grou, y = Measurement,
idx = c("Control 1", "Test 1")
),
regexp = "Column x is not in data"
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measuremen,
idx = c("Control 1", "Test 1")
),
regexp = "Column y is not in data"
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"), id_col = I
),
regexp = "Column id_col is not in data"
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"), colour = Grou
),
regexp = "Column colour is not in data"
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1")
),
regexp = "does not consist of at least 2 groups"
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = list(c("Control 1", "Test 1"), c("Control 2"))
),
regexp = "does not consist of at least 2 groups"
)
})
testthat::test_that("Able to detect non-valid params for proportional = TRUE", {
np_dataset <- generate_non_proportional_dataset()
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"), proportional = TRUE
),
regexp = "data is not proportional"
)
})
testthat::test_that("Able to detect non-valid params for is_paired = TRUE", {
np_dataset <- generate_non_proportional_dataset()
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1", "Test 2"), paired = "baseline"
),
regexp = "is TRUE but no id_col was supplied"
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1", "Test 2"), paired = "some",
id_col = ID
),
regexp = "is not 'baseline' or 'sequential'."
)
})
testthat::test_that("Able to detect non-valid params for minimeta = TRUE", {
p_dataset <- generate_proportional_dataset()
expect_error(
dabestr::load(p_dataset,
x = Group, y = Success,
idx = c("Control 1", "Test 1"), id_col = ID,
proportional = TRUE, minimeta = TRUE
),
regexp = "proportional is TRUE but minimeta is also TRUE."
)
np_dataset <- generate_non_proportional_dataset()
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"),
delta2 = TRUE, minimeta = TRUE
),
regexp = "delta2 is TRUE but minimeta is also TRUE."
)
expect_error(
dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1", "Test 2"),
minimeta = TRUE
),
regexp = "minimeta is TRUE, but some idx does not consist of exactly 2 groups"
)
})
testthat::test_that("Able to detect non-valid params for delta2 = TRUE", {
p_dataset <- generate_proportional_dataset()
expect_error(
dabestr::load(p_dataset,
x = Group, y = Success,
idx = c("Control 1", "Test 1"), id_col = ID,
proportional = TRUE, delta2 = TRUE
),
regexp = "delta2 is TRUE but proportional is also TRUE."
)
})
#### Printing functions
testthat::test_that("Prints correct output for dabestr object", {
#### 2GROUP ####
np_dataset <- generate_non_proportional_dataset()
dabest_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1")
)
expect_output(print(dabest_obj), regexp = "95% confidence intervals")
expect_output(print(dabest_obj), regexp = "Test 1 minus Control 1")
expect_output(print(dabest_obj), regexp = "5000 resamples")
#### MULTIGROUP BASELINE ####
dabest_obj <- dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = list(c("Control 1", "Test 1"), c("Control 2", "Test 2", "Test 3")),
paired = "baseline", id_col = ID
)
expect_output(print(dabest_obj), regexp = "Test 1 minus Control 1")
expect_output(print(dabest_obj), regexp = "Test 2 minus Control 2")
expect_output(print(dabest_obj), regexp = "Test 3 minus Control 2")
#### MULTIGROUP SEQUENTIAL ####
dabest_obj <- dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = list(c("Control 1", "Test 1"), c("Control 2", "Test 2", "Test 3")),
paired = "sequential", id_col = ID
)
expect_output(print(dabest_obj), regexp = "Test 1 minus Control 1")
expect_output(print(dabest_obj), regexp = "Test 2 minus Control 2")
expect_output(print(dabest_obj), regexp = "Test 3 minus Test 2")
#### 2GROUP PROPORTION ####
p_dataset <- generate_proportional_dataset()
dabest_obj <- dabestr::load(
data = p_dataset, x = Group, y = Success, idx = c("Control 2", "Test 2"),
proportional = TRUE
)
expect_output(print(dabest_obj), regexp = "95% confidence intervals")
expect_output(print(dabest_obj), regexp = "Test 2 minus Control 2")
expect_output(print(dabest_obj), regexp = "5000 resamples")
#### MINIMETA ####
np_dataset <- generate_non_proportional_dataset()
dabest_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = list(
c("Control 1", "Test 1"),
c("Control 2", "Test 2")
),
minimeta = TRUE
)
expect_output(print(dabest_obj), regexp = "95% confidence intervals")
expect_output(print(dabest_obj), regexp = "Test 1 minus Control 1")
expect_output(print(dabest_obj), regexp = "Test 2 minus Control 2")
expect_output(print(dabest_obj), regexp = "weighted delta")
expect_output(print(dabest_obj), regexp = "5000 resamples")
#### DELTADELTA ####
dd_dataset <- generate_deltadelta_dataset()
dabest_obj <- dabestr::load(dd_dataset,
x = Genotype, y = Measurement, delta2 = TRUE, experiment = Treatment,
idx = list(c("W Placebo", "M Placebo"), c("W Drug", "M Drug")), colour = Genotype
)
expect_output(print(dabest_obj), regexp = "M Placebo minus W Placebo")
expect_output(print(dabest_obj), regexp = "M Drug minus W Drug")
expect_output(print(dabest_obj), regexp = "Drug minus Placebo")
#### ADJUSTING CI ####
dabest_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"), ci = 85
)
expect_output(print(dabest_obj), regexp = "85% confidence intervals")
expect_output(print(dabest_obj), regexp = "Test 1 minus Control 1")
expect_output(print(dabest_obj), regexp = "5000 resamples")
#### ADJUSTING RESAMPLES ####
dabest_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"), resamples = 3000
)
expect_output(print(dabest_obj), regexp = "95% confidence intervals")
expect_output(print(dabest_obj), regexp = "Test 1 minus Control 1")
expect_output(print(dabest_obj), regexp = "3000 resamples")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.